Don't understand an integral with complex numbers.
$begingroup$
I am studying the fourier transformation and I don't understand this integral (it is set to find the Fourier coefficients of the function $f(x)=x$: Specifically, I know it is integrating by parts, but I don't understand the last equality. I'd appreciate if someone could elaborate. Thank you
integration fourier-series
$endgroup$
add a comment |
$begingroup$
I am studying the fourier transformation and I don't understand this integral (it is set to find the Fourier coefficients of the function $f(x)=x$: Specifically, I know it is integrating by parts, but I don't understand the last equality. I'd appreciate if someone could elaborate. Thank you
integration fourier-series
$endgroup$
1
$begingroup$
I recommend taking the expression before the last $=$ and trying to evaluate it yourself.
$endgroup$
– Wojowu
Jan 27 at 13:58
add a comment |
$begingroup$
I am studying the fourier transformation and I don't understand this integral (it is set to find the Fourier coefficients of the function $f(x)=x$: Specifically, I know it is integrating by parts, but I don't understand the last equality. I'd appreciate if someone could elaborate. Thank you
integration fourier-series
$endgroup$
I am studying the fourier transformation and I don't understand this integral (it is set to find the Fourier coefficients of the function $f(x)=x$: Specifically, I know it is integrating by parts, but I don't understand the last equality. I'd appreciate if someone could elaborate. Thank you
integration fourier-series
integration fourier-series
asked Jan 27 at 13:57
codingnightcodingnight
877
877
1
$begingroup$
I recommend taking the expression before the last $=$ and trying to evaluate it yourself.
$endgroup$
– Wojowu
Jan 27 at 13:58
add a comment |
1
$begingroup$
I recommend taking the expression before the last $=$ and trying to evaluate it yourself.
$endgroup$
– Wojowu
Jan 27 at 13:58
1
1
$begingroup$
I recommend taking the expression before the last $=$ and trying to evaluate it yourself.
$endgroup$
– Wojowu
Jan 27 at 13:58
$begingroup$
I recommend taking the expression before the last $=$ and trying to evaluate it yourself.
$endgroup$
– Wojowu
Jan 27 at 13:58
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
First of all, note thatbegin{align}int_{-frac12}^frac12e^{-2pi inx},mathrm dx&=left[frac{e^{-2pi inx}}{2pi in}right]_{x=-frac12}^{x=frac12}=0,end{align}since the exponential function is periodic with period $2pi i$.
So, the expression after the second $=$ sign is just$$left[frac{-1}{2pi in}e^{-2pi inx}right]_{x=-frac12}^{x=frac12},$$which is precisely $dfrac{(-1)^{n+1}}{2pi in}$.
$endgroup$
add a comment |
$begingroup$
Hint:
Expanding out the RHS gives us:
$$frac{1}{2nipi}bigg(frac 12(e^{npi i}+e^{-npi i})bigg)+frac{1}{2nipi}bigg(frac{1}{2nipi}(e^{-npi i}-e^{npi i})bigg)$$
Can you see this is:
$$frac{cos (npi)}{2nipi}+frac{sin(-npi)}{2n^2pi^2i}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089589%2fdont-understand-an-integral-with-complex-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First of all, note thatbegin{align}int_{-frac12}^frac12e^{-2pi inx},mathrm dx&=left[frac{e^{-2pi inx}}{2pi in}right]_{x=-frac12}^{x=frac12}=0,end{align}since the exponential function is periodic with period $2pi i$.
So, the expression after the second $=$ sign is just$$left[frac{-1}{2pi in}e^{-2pi inx}right]_{x=-frac12}^{x=frac12},$$which is precisely $dfrac{(-1)^{n+1}}{2pi in}$.
$endgroup$
add a comment |
$begingroup$
First of all, note thatbegin{align}int_{-frac12}^frac12e^{-2pi inx},mathrm dx&=left[frac{e^{-2pi inx}}{2pi in}right]_{x=-frac12}^{x=frac12}=0,end{align}since the exponential function is periodic with period $2pi i$.
So, the expression after the second $=$ sign is just$$left[frac{-1}{2pi in}e^{-2pi inx}right]_{x=-frac12}^{x=frac12},$$which is precisely $dfrac{(-1)^{n+1}}{2pi in}$.
$endgroup$
add a comment |
$begingroup$
First of all, note thatbegin{align}int_{-frac12}^frac12e^{-2pi inx},mathrm dx&=left[frac{e^{-2pi inx}}{2pi in}right]_{x=-frac12}^{x=frac12}=0,end{align}since the exponential function is periodic with period $2pi i$.
So, the expression after the second $=$ sign is just$$left[frac{-1}{2pi in}e^{-2pi inx}right]_{x=-frac12}^{x=frac12},$$which is precisely $dfrac{(-1)^{n+1}}{2pi in}$.
$endgroup$
First of all, note thatbegin{align}int_{-frac12}^frac12e^{-2pi inx},mathrm dx&=left[frac{e^{-2pi inx}}{2pi in}right]_{x=-frac12}^{x=frac12}=0,end{align}since the exponential function is periodic with period $2pi i$.
So, the expression after the second $=$ sign is just$$left[frac{-1}{2pi in}e^{-2pi inx}right]_{x=-frac12}^{x=frac12},$$which is precisely $dfrac{(-1)^{n+1}}{2pi in}$.
edited Jan 27 at 14:24
answered Jan 27 at 14:08


José Carlos SantosJosé Carlos Santos
170k23132238
170k23132238
add a comment |
add a comment |
$begingroup$
Hint:
Expanding out the RHS gives us:
$$frac{1}{2nipi}bigg(frac 12(e^{npi i}+e^{-npi i})bigg)+frac{1}{2nipi}bigg(frac{1}{2nipi}(e^{-npi i}-e^{npi i})bigg)$$
Can you see this is:
$$frac{cos (npi)}{2nipi}+frac{sin(-npi)}{2n^2pi^2i}$$
$endgroup$
add a comment |
$begingroup$
Hint:
Expanding out the RHS gives us:
$$frac{1}{2nipi}bigg(frac 12(e^{npi i}+e^{-npi i})bigg)+frac{1}{2nipi}bigg(frac{1}{2nipi}(e^{-npi i}-e^{npi i})bigg)$$
Can you see this is:
$$frac{cos (npi)}{2nipi}+frac{sin(-npi)}{2n^2pi^2i}$$
$endgroup$
add a comment |
$begingroup$
Hint:
Expanding out the RHS gives us:
$$frac{1}{2nipi}bigg(frac 12(e^{npi i}+e^{-npi i})bigg)+frac{1}{2nipi}bigg(frac{1}{2nipi}(e^{-npi i}-e^{npi i})bigg)$$
Can you see this is:
$$frac{cos (npi)}{2nipi}+frac{sin(-npi)}{2n^2pi^2i}$$
$endgroup$
Hint:
Expanding out the RHS gives us:
$$frac{1}{2nipi}bigg(frac 12(e^{npi i}+e^{-npi i})bigg)+frac{1}{2nipi}bigg(frac{1}{2nipi}(e^{-npi i}-e^{npi i})bigg)$$
Can you see this is:
$$frac{cos (npi)}{2nipi}+frac{sin(-npi)}{2n^2pi^2i}$$
answered Jan 27 at 14:18


Rhys HughesRhys Hughes
7,0801630
7,0801630
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089589%2fdont-understand-an-integral-with-complex-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
I recommend taking the expression before the last $=$ and trying to evaluate it yourself.
$endgroup$
– Wojowu
Jan 27 at 13:58