Evaluate $int_0^{infty}frac{x^2}{(e^x-1)^2}dx$












3












$begingroup$


I want to do



$$int_0^infty!!! frac{x^2}{(e^x-1)^2}text{d}x$$



I know how to do $int_0^infty frac{x}{(e^x-1)}text{d}x$ by using $-frac{ln(1-x)}{x} = sum_{n=1}^infty frac{x^{n-1}}{n}$. But when I try to do the same trick I get a double sum which I have no idea of how to simply.



The result should be able to be presented as an expression involving $zeta(3)$.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    I want to do



    $$int_0^infty!!! frac{x^2}{(e^x-1)^2}text{d}x$$



    I know how to do $int_0^infty frac{x}{(e^x-1)}text{d}x$ by using $-frac{ln(1-x)}{x} = sum_{n=1}^infty frac{x^{n-1}}{n}$. But when I try to do the same trick I get a double sum which I have no idea of how to simply.



    The result should be able to be presented as an expression involving $zeta(3)$.










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      0



      $begingroup$


      I want to do



      $$int_0^infty!!! frac{x^2}{(e^x-1)^2}text{d}x$$



      I know how to do $int_0^infty frac{x}{(e^x-1)}text{d}x$ by using $-frac{ln(1-x)}{x} = sum_{n=1}^infty frac{x^{n-1}}{n}$. But when I try to do the same trick I get a double sum which I have no idea of how to simply.



      The result should be able to be presented as an expression involving $zeta(3)$.










      share|cite|improve this question











      $endgroup$




      I want to do



      $$int_0^infty!!! frac{x^2}{(e^x-1)^2}text{d}x$$



      I know how to do $int_0^infty frac{x}{(e^x-1)}text{d}x$ by using $-frac{ln(1-x)}{x} = sum_{n=1}^infty frac{x^{n-1}}{n}$. But when I try to do the same trick I get a double sum which I have no idea of how to simply.



      The result should be able to be presented as an expression involving $zeta(3)$.







      calculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Oct 17 '18 at 22:12







      Awoo

















      asked Oct 17 '18 at 21:01









      AwooAwoo

      448




      448






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          Lets start with the integral representation of the Polylogarithm $operatorname{Li}_s(z)$ which is given by



          $$Gamma(s)operatorname{Li}_s(z)=int_0^{infty}frac{t^{s-1}}{e^t/z-1}mathrm dttag1$$



          furthermore note the relations



          $$frac{mathrm d}{mathrm dz}operatorname{Li}_s(z)=frac{operatorname{Li}_{s-1}(z)}{z}text{ and }operatorname{Li}_s(1)=zeta(s)tag2$$



          Differentiate $(1)$ w.r.t. $z$ by using the first property of $(2)$ yields to



          $$begin{align}
          frac{mathrm d}{mathrm dz}Gamma(s)operatorname{Li}_s(z)&=frac {mathrm d}{mathrm dz}int_0^{infty}t^{s-1}frac{z}{e^t-z}mathrm dt\
          Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}t^{s-1}frac{(e^t-z)+z}{(e^t-z)^2}mathrm dt\
          Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}frac{t^{s-1}}{e^t-z}mathrm dt+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
          Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=Gamma(s)frac{operatorname{Li}_{s}(z)}{z}+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
          therefore~int_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt&=Gamma(s)left[frac{operatorname{Li}_{s-1}(z)}{z^2}+frac{operatorname{Li}_{s}(z)}{z^2}right]
          end{align}$$



          Setting $s=3$ and $z=1$ and by including the second relation of $(2)$ gives us



          $$begin{align}
          int_0^{infty}frac{t^{3-1}}{(e^t-1)^2}mathrm dt&=Gamma(3)left[frac{operatorname{Li}_{3-1}(1)}{1^2}+frac{operatorname{Li}_{3}(1)}{1^2}right]\
          int_0^{infty}frac{t^{2}}{(e^t-1)^2}mathrm dt&=2[zeta(2)-zeta(3)]
          end{align}$$




          $$therefore~int_0^{infty}frac{t^{2}}{(e^t-1)^2}dt=frac{pi^2}3-2zeta(3)=0.885~754...$$




          Where the integral on the left equals your integral by setting $t=x$. Numerically WolframAlpha gives the same solution.





          Your approach to $int_0^{infty}frac x{e^x-1}dx$ is also given through the special case $s=2$. Note that the derivative of the Dilogarithm $operatorname{Li}_2(z)$ is given by the term $-ln(1-x)/x$. Therefore your attempt was not wrong at all.






          share|cite|improve this answer











          $endgroup$





















            3












            $begingroup$

            One more approach: the integral is $$int_0^inftyfrac{x^2 e^{-2x}}{(1-e^{-x})^2}dx=sum_{n=2}^infty(n-1)int_0^infty x^2 e^{-nx}dx=2sum_{n=2}^infty (n^{-2}-n^{-3})=2(zeta(2)-zeta(3)).$$






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              Withouth invoking the polylogarithm, for any $ninmathbb{N}$ and any $a>0$ we have



              $$begin{eqnarray*} I(n,a)=int_{0}^{+infty}frac{x^n}{e^{ax}-1},dx&=&sum_{mgeq 1}int_{0}^{+infty}x^n e^{-ma x},dx\&=&sum_{mgeq 1}frac{n!}{(ma)^{n+1}}=frac{n!}{a^{n+1}}zeta(n+1)end{eqnarray*}$$
              and by differentiation under the integral sign
              $$ J(n,a)=frac{partial}{partial a} I(n,a)=int_{0}^{+infty}frac{-x^{n+1} e^{ax}}{(e^{ax}-1)^2},dx = -frac{(n+1)!}{a^{n+2}}zeta(n+1)$$
              such that
              $$begin{eqnarray*} int_{0}^{+infty}frac{x^{n+1}}{(e^{ax}-1)^2},dx &=& -left[I(n+1,a)+J(n,a)right]\&=&frac{(n+1)!}{a^{n+1}}zeta(n+1)-frac{(n+1)!}{a^{n+2}}zeta(n+2)end{eqnarray*}$$
              and by setting $a=n=1$
              $$ int_{0}^{+infty}frac{x^{2}}{(e^{x}-1)^2},dx =color{red}{2left(zeta(2)-zeta(3)right)}=sum_{ngeq 1}frac{2n}{(n+1)^3}=sum_{ngeq 1}frac{6n+5(-1)^{n}}{n^3binom{2n}{n}}. $$






              share|cite|improve this answer











              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2959909%2fevaluate-int-0-infty-fracx2ex-12dx%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2












                $begingroup$

                Lets start with the integral representation of the Polylogarithm $operatorname{Li}_s(z)$ which is given by



                $$Gamma(s)operatorname{Li}_s(z)=int_0^{infty}frac{t^{s-1}}{e^t/z-1}mathrm dttag1$$



                furthermore note the relations



                $$frac{mathrm d}{mathrm dz}operatorname{Li}_s(z)=frac{operatorname{Li}_{s-1}(z)}{z}text{ and }operatorname{Li}_s(1)=zeta(s)tag2$$



                Differentiate $(1)$ w.r.t. $z$ by using the first property of $(2)$ yields to



                $$begin{align}
                frac{mathrm d}{mathrm dz}Gamma(s)operatorname{Li}_s(z)&=frac {mathrm d}{mathrm dz}int_0^{infty}t^{s-1}frac{z}{e^t-z}mathrm dt\
                Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}t^{s-1}frac{(e^t-z)+z}{(e^t-z)^2}mathrm dt\
                Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}frac{t^{s-1}}{e^t-z}mathrm dt+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
                Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=Gamma(s)frac{operatorname{Li}_{s}(z)}{z}+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
                therefore~int_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt&=Gamma(s)left[frac{operatorname{Li}_{s-1}(z)}{z^2}+frac{operatorname{Li}_{s}(z)}{z^2}right]
                end{align}$$



                Setting $s=3$ and $z=1$ and by including the second relation of $(2)$ gives us



                $$begin{align}
                int_0^{infty}frac{t^{3-1}}{(e^t-1)^2}mathrm dt&=Gamma(3)left[frac{operatorname{Li}_{3-1}(1)}{1^2}+frac{operatorname{Li}_{3}(1)}{1^2}right]\
                int_0^{infty}frac{t^{2}}{(e^t-1)^2}mathrm dt&=2[zeta(2)-zeta(3)]
                end{align}$$




                $$therefore~int_0^{infty}frac{t^{2}}{(e^t-1)^2}dt=frac{pi^2}3-2zeta(3)=0.885~754...$$




                Where the integral on the left equals your integral by setting $t=x$. Numerically WolframAlpha gives the same solution.





                Your approach to $int_0^{infty}frac x{e^x-1}dx$ is also given through the special case $s=2$. Note that the derivative of the Dilogarithm $operatorname{Li}_2(z)$ is given by the term $-ln(1-x)/x$. Therefore your attempt was not wrong at all.






                share|cite|improve this answer











                $endgroup$


















                  2












                  $begingroup$

                  Lets start with the integral representation of the Polylogarithm $operatorname{Li}_s(z)$ which is given by



                  $$Gamma(s)operatorname{Li}_s(z)=int_0^{infty}frac{t^{s-1}}{e^t/z-1}mathrm dttag1$$



                  furthermore note the relations



                  $$frac{mathrm d}{mathrm dz}operatorname{Li}_s(z)=frac{operatorname{Li}_{s-1}(z)}{z}text{ and }operatorname{Li}_s(1)=zeta(s)tag2$$



                  Differentiate $(1)$ w.r.t. $z$ by using the first property of $(2)$ yields to



                  $$begin{align}
                  frac{mathrm d}{mathrm dz}Gamma(s)operatorname{Li}_s(z)&=frac {mathrm d}{mathrm dz}int_0^{infty}t^{s-1}frac{z}{e^t-z}mathrm dt\
                  Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}t^{s-1}frac{(e^t-z)+z}{(e^t-z)^2}mathrm dt\
                  Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}frac{t^{s-1}}{e^t-z}mathrm dt+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
                  Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=Gamma(s)frac{operatorname{Li}_{s}(z)}{z}+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
                  therefore~int_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt&=Gamma(s)left[frac{operatorname{Li}_{s-1}(z)}{z^2}+frac{operatorname{Li}_{s}(z)}{z^2}right]
                  end{align}$$



                  Setting $s=3$ and $z=1$ and by including the second relation of $(2)$ gives us



                  $$begin{align}
                  int_0^{infty}frac{t^{3-1}}{(e^t-1)^2}mathrm dt&=Gamma(3)left[frac{operatorname{Li}_{3-1}(1)}{1^2}+frac{operatorname{Li}_{3}(1)}{1^2}right]\
                  int_0^{infty}frac{t^{2}}{(e^t-1)^2}mathrm dt&=2[zeta(2)-zeta(3)]
                  end{align}$$




                  $$therefore~int_0^{infty}frac{t^{2}}{(e^t-1)^2}dt=frac{pi^2}3-2zeta(3)=0.885~754...$$




                  Where the integral on the left equals your integral by setting $t=x$. Numerically WolframAlpha gives the same solution.





                  Your approach to $int_0^{infty}frac x{e^x-1}dx$ is also given through the special case $s=2$. Note that the derivative of the Dilogarithm $operatorname{Li}_2(z)$ is given by the term $-ln(1-x)/x$. Therefore your attempt was not wrong at all.






                  share|cite|improve this answer











                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    Lets start with the integral representation of the Polylogarithm $operatorname{Li}_s(z)$ which is given by



                    $$Gamma(s)operatorname{Li}_s(z)=int_0^{infty}frac{t^{s-1}}{e^t/z-1}mathrm dttag1$$



                    furthermore note the relations



                    $$frac{mathrm d}{mathrm dz}operatorname{Li}_s(z)=frac{operatorname{Li}_{s-1}(z)}{z}text{ and }operatorname{Li}_s(1)=zeta(s)tag2$$



                    Differentiate $(1)$ w.r.t. $z$ by using the first property of $(2)$ yields to



                    $$begin{align}
                    frac{mathrm d}{mathrm dz}Gamma(s)operatorname{Li}_s(z)&=frac {mathrm d}{mathrm dz}int_0^{infty}t^{s-1}frac{z}{e^t-z}mathrm dt\
                    Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}t^{s-1}frac{(e^t-z)+z}{(e^t-z)^2}mathrm dt\
                    Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}frac{t^{s-1}}{e^t-z}mathrm dt+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
                    Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=Gamma(s)frac{operatorname{Li}_{s}(z)}{z}+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
                    therefore~int_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt&=Gamma(s)left[frac{operatorname{Li}_{s-1}(z)}{z^2}+frac{operatorname{Li}_{s}(z)}{z^2}right]
                    end{align}$$



                    Setting $s=3$ and $z=1$ and by including the second relation of $(2)$ gives us



                    $$begin{align}
                    int_0^{infty}frac{t^{3-1}}{(e^t-1)^2}mathrm dt&=Gamma(3)left[frac{operatorname{Li}_{3-1}(1)}{1^2}+frac{operatorname{Li}_{3}(1)}{1^2}right]\
                    int_0^{infty}frac{t^{2}}{(e^t-1)^2}mathrm dt&=2[zeta(2)-zeta(3)]
                    end{align}$$




                    $$therefore~int_0^{infty}frac{t^{2}}{(e^t-1)^2}dt=frac{pi^2}3-2zeta(3)=0.885~754...$$




                    Where the integral on the left equals your integral by setting $t=x$. Numerically WolframAlpha gives the same solution.





                    Your approach to $int_0^{infty}frac x{e^x-1}dx$ is also given through the special case $s=2$. Note that the derivative of the Dilogarithm $operatorname{Li}_2(z)$ is given by the term $-ln(1-x)/x$. Therefore your attempt was not wrong at all.






                    share|cite|improve this answer











                    $endgroup$



                    Lets start with the integral representation of the Polylogarithm $operatorname{Li}_s(z)$ which is given by



                    $$Gamma(s)operatorname{Li}_s(z)=int_0^{infty}frac{t^{s-1}}{e^t/z-1}mathrm dttag1$$



                    furthermore note the relations



                    $$frac{mathrm d}{mathrm dz}operatorname{Li}_s(z)=frac{operatorname{Li}_{s-1}(z)}{z}text{ and }operatorname{Li}_s(1)=zeta(s)tag2$$



                    Differentiate $(1)$ w.r.t. $z$ by using the first property of $(2)$ yields to



                    $$begin{align}
                    frac{mathrm d}{mathrm dz}Gamma(s)operatorname{Li}_s(z)&=frac {mathrm d}{mathrm dz}int_0^{infty}t^{s-1}frac{z}{e^t-z}mathrm dt\
                    Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}t^{s-1}frac{(e^t-z)+z}{(e^t-z)^2}mathrm dt\
                    Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}frac{t^{s-1}}{e^t-z}mathrm dt+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
                    Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=Gamma(s)frac{operatorname{Li}_{s}(z)}{z}+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
                    therefore~int_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt&=Gamma(s)left[frac{operatorname{Li}_{s-1}(z)}{z^2}+frac{operatorname{Li}_{s}(z)}{z^2}right]
                    end{align}$$



                    Setting $s=3$ and $z=1$ and by including the second relation of $(2)$ gives us



                    $$begin{align}
                    int_0^{infty}frac{t^{3-1}}{(e^t-1)^2}mathrm dt&=Gamma(3)left[frac{operatorname{Li}_{3-1}(1)}{1^2}+frac{operatorname{Li}_{3}(1)}{1^2}right]\
                    int_0^{infty}frac{t^{2}}{(e^t-1)^2}mathrm dt&=2[zeta(2)-zeta(3)]
                    end{align}$$




                    $$therefore~int_0^{infty}frac{t^{2}}{(e^t-1)^2}dt=frac{pi^2}3-2zeta(3)=0.885~754...$$




                    Where the integral on the left equals your integral by setting $t=x$. Numerically WolframAlpha gives the same solution.





                    Your approach to $int_0^{infty}frac x{e^x-1}dx$ is also given through the special case $s=2$. Note that the derivative of the Dilogarithm $operatorname{Li}_2(z)$ is given by the term $-ln(1-x)/x$. Therefore your attempt was not wrong at all.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jan 26 at 12:01

























                    answered Oct 17 '18 at 21:32









                    mrtaurhomrtaurho

                    6,04551641




                    6,04551641























                        3












                        $begingroup$

                        One more approach: the integral is $$int_0^inftyfrac{x^2 e^{-2x}}{(1-e^{-x})^2}dx=sum_{n=2}^infty(n-1)int_0^infty x^2 e^{-nx}dx=2sum_{n=2}^infty (n^{-2}-n^{-3})=2(zeta(2)-zeta(3)).$$






                        share|cite|improve this answer









                        $endgroup$


















                          3












                          $begingroup$

                          One more approach: the integral is $$int_0^inftyfrac{x^2 e^{-2x}}{(1-e^{-x})^2}dx=sum_{n=2}^infty(n-1)int_0^infty x^2 e^{-nx}dx=2sum_{n=2}^infty (n^{-2}-n^{-3})=2(zeta(2)-zeta(3)).$$






                          share|cite|improve this answer









                          $endgroup$
















                            3












                            3








                            3





                            $begingroup$

                            One more approach: the integral is $$int_0^inftyfrac{x^2 e^{-2x}}{(1-e^{-x})^2}dx=sum_{n=2}^infty(n-1)int_0^infty x^2 e^{-nx}dx=2sum_{n=2}^infty (n^{-2}-n^{-3})=2(zeta(2)-zeta(3)).$$






                            share|cite|improve this answer









                            $endgroup$



                            One more approach: the integral is $$int_0^inftyfrac{x^2 e^{-2x}}{(1-e^{-x})^2}dx=sum_{n=2}^infty(n-1)int_0^infty x^2 e^{-nx}dx=2sum_{n=2}^infty (n^{-2}-n^{-3})=2(zeta(2)-zeta(3)).$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Oct 18 '18 at 18:25









                            J.G.J.G.

                            31.2k23149




                            31.2k23149























                                1












                                $begingroup$

                                Withouth invoking the polylogarithm, for any $ninmathbb{N}$ and any $a>0$ we have



                                $$begin{eqnarray*} I(n,a)=int_{0}^{+infty}frac{x^n}{e^{ax}-1},dx&=&sum_{mgeq 1}int_{0}^{+infty}x^n e^{-ma x},dx\&=&sum_{mgeq 1}frac{n!}{(ma)^{n+1}}=frac{n!}{a^{n+1}}zeta(n+1)end{eqnarray*}$$
                                and by differentiation under the integral sign
                                $$ J(n,a)=frac{partial}{partial a} I(n,a)=int_{0}^{+infty}frac{-x^{n+1} e^{ax}}{(e^{ax}-1)^2},dx = -frac{(n+1)!}{a^{n+2}}zeta(n+1)$$
                                such that
                                $$begin{eqnarray*} int_{0}^{+infty}frac{x^{n+1}}{(e^{ax}-1)^2},dx &=& -left[I(n+1,a)+J(n,a)right]\&=&frac{(n+1)!}{a^{n+1}}zeta(n+1)-frac{(n+1)!}{a^{n+2}}zeta(n+2)end{eqnarray*}$$
                                and by setting $a=n=1$
                                $$ int_{0}^{+infty}frac{x^{2}}{(e^{x}-1)^2},dx =color{red}{2left(zeta(2)-zeta(3)right)}=sum_{ngeq 1}frac{2n}{(n+1)^3}=sum_{ngeq 1}frac{6n+5(-1)^{n}}{n^3binom{2n}{n}}. $$






                                share|cite|improve this answer











                                $endgroup$


















                                  1












                                  $begingroup$

                                  Withouth invoking the polylogarithm, for any $ninmathbb{N}$ and any $a>0$ we have



                                  $$begin{eqnarray*} I(n,a)=int_{0}^{+infty}frac{x^n}{e^{ax}-1},dx&=&sum_{mgeq 1}int_{0}^{+infty}x^n e^{-ma x},dx\&=&sum_{mgeq 1}frac{n!}{(ma)^{n+1}}=frac{n!}{a^{n+1}}zeta(n+1)end{eqnarray*}$$
                                  and by differentiation under the integral sign
                                  $$ J(n,a)=frac{partial}{partial a} I(n,a)=int_{0}^{+infty}frac{-x^{n+1} e^{ax}}{(e^{ax}-1)^2},dx = -frac{(n+1)!}{a^{n+2}}zeta(n+1)$$
                                  such that
                                  $$begin{eqnarray*} int_{0}^{+infty}frac{x^{n+1}}{(e^{ax}-1)^2},dx &=& -left[I(n+1,a)+J(n,a)right]\&=&frac{(n+1)!}{a^{n+1}}zeta(n+1)-frac{(n+1)!}{a^{n+2}}zeta(n+2)end{eqnarray*}$$
                                  and by setting $a=n=1$
                                  $$ int_{0}^{+infty}frac{x^{2}}{(e^{x}-1)^2},dx =color{red}{2left(zeta(2)-zeta(3)right)}=sum_{ngeq 1}frac{2n}{(n+1)^3}=sum_{ngeq 1}frac{6n+5(-1)^{n}}{n^3binom{2n}{n}}. $$






                                  share|cite|improve this answer











                                  $endgroup$
















                                    1












                                    1








                                    1





                                    $begingroup$

                                    Withouth invoking the polylogarithm, for any $ninmathbb{N}$ and any $a>0$ we have



                                    $$begin{eqnarray*} I(n,a)=int_{0}^{+infty}frac{x^n}{e^{ax}-1},dx&=&sum_{mgeq 1}int_{0}^{+infty}x^n e^{-ma x},dx\&=&sum_{mgeq 1}frac{n!}{(ma)^{n+1}}=frac{n!}{a^{n+1}}zeta(n+1)end{eqnarray*}$$
                                    and by differentiation under the integral sign
                                    $$ J(n,a)=frac{partial}{partial a} I(n,a)=int_{0}^{+infty}frac{-x^{n+1} e^{ax}}{(e^{ax}-1)^2},dx = -frac{(n+1)!}{a^{n+2}}zeta(n+1)$$
                                    such that
                                    $$begin{eqnarray*} int_{0}^{+infty}frac{x^{n+1}}{(e^{ax}-1)^2},dx &=& -left[I(n+1,a)+J(n,a)right]\&=&frac{(n+1)!}{a^{n+1}}zeta(n+1)-frac{(n+1)!}{a^{n+2}}zeta(n+2)end{eqnarray*}$$
                                    and by setting $a=n=1$
                                    $$ int_{0}^{+infty}frac{x^{2}}{(e^{x}-1)^2},dx =color{red}{2left(zeta(2)-zeta(3)right)}=sum_{ngeq 1}frac{2n}{(n+1)^3}=sum_{ngeq 1}frac{6n+5(-1)^{n}}{n^3binom{2n}{n}}. $$






                                    share|cite|improve this answer











                                    $endgroup$



                                    Withouth invoking the polylogarithm, for any $ninmathbb{N}$ and any $a>0$ we have



                                    $$begin{eqnarray*} I(n,a)=int_{0}^{+infty}frac{x^n}{e^{ax}-1},dx&=&sum_{mgeq 1}int_{0}^{+infty}x^n e^{-ma x},dx\&=&sum_{mgeq 1}frac{n!}{(ma)^{n+1}}=frac{n!}{a^{n+1}}zeta(n+1)end{eqnarray*}$$
                                    and by differentiation under the integral sign
                                    $$ J(n,a)=frac{partial}{partial a} I(n,a)=int_{0}^{+infty}frac{-x^{n+1} e^{ax}}{(e^{ax}-1)^2},dx = -frac{(n+1)!}{a^{n+2}}zeta(n+1)$$
                                    such that
                                    $$begin{eqnarray*} int_{0}^{+infty}frac{x^{n+1}}{(e^{ax}-1)^2},dx &=& -left[I(n+1,a)+J(n,a)right]\&=&frac{(n+1)!}{a^{n+1}}zeta(n+1)-frac{(n+1)!}{a^{n+2}}zeta(n+2)end{eqnarray*}$$
                                    and by setting $a=n=1$
                                    $$ int_{0}^{+infty}frac{x^{2}}{(e^{x}-1)^2},dx =color{red}{2left(zeta(2)-zeta(3)right)}=sum_{ngeq 1}frac{2n}{(n+1)^3}=sum_{ngeq 1}frac{6n+5(-1)^{n}}{n^3binom{2n}{n}}. $$







                                    share|cite|improve this answer














                                    share|cite|improve this answer



                                    share|cite|improve this answer








                                    edited Oct 18 '18 at 18:17

























                                    answered Oct 18 '18 at 18:11









                                    Jack D'AurizioJack D'Aurizio

                                    291k33284669




                                    291k33284669






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2959909%2fevaluate-int-0-infty-fracx2ex-12dx%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        MongoDB - Not Authorized To Execute Command

                                        How to fix TextFormField cause rebuild widget in Flutter

                                        in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith