Evaluate $int_0^{infty}frac{x^2}{(e^x-1)^2}dx$
$begingroup$
I want to do
$$int_0^infty!!! frac{x^2}{(e^x-1)^2}text{d}x$$
I know how to do $int_0^infty frac{x}{(e^x-1)}text{d}x$ by using $-frac{ln(1-x)}{x} = sum_{n=1}^infty frac{x^{n-1}}{n}$. But when I try to do the same trick I get a double sum which I have no idea of how to simply.
The result should be able to be presented as an expression involving $zeta(3)$.
calculus
$endgroup$
add a comment |
$begingroup$
I want to do
$$int_0^infty!!! frac{x^2}{(e^x-1)^2}text{d}x$$
I know how to do $int_0^infty frac{x}{(e^x-1)}text{d}x$ by using $-frac{ln(1-x)}{x} = sum_{n=1}^infty frac{x^{n-1}}{n}$. But when I try to do the same trick I get a double sum which I have no idea of how to simply.
The result should be able to be presented as an expression involving $zeta(3)$.
calculus
$endgroup$
add a comment |
$begingroup$
I want to do
$$int_0^infty!!! frac{x^2}{(e^x-1)^2}text{d}x$$
I know how to do $int_0^infty frac{x}{(e^x-1)}text{d}x$ by using $-frac{ln(1-x)}{x} = sum_{n=1}^infty frac{x^{n-1}}{n}$. But when I try to do the same trick I get a double sum which I have no idea of how to simply.
The result should be able to be presented as an expression involving $zeta(3)$.
calculus
$endgroup$
I want to do
$$int_0^infty!!! frac{x^2}{(e^x-1)^2}text{d}x$$
I know how to do $int_0^infty frac{x}{(e^x-1)}text{d}x$ by using $-frac{ln(1-x)}{x} = sum_{n=1}^infty frac{x^{n-1}}{n}$. But when I try to do the same trick I get a double sum which I have no idea of how to simply.
The result should be able to be presented as an expression involving $zeta(3)$.
calculus
calculus
edited Oct 17 '18 at 22:12
Awoo
asked Oct 17 '18 at 21:01


AwooAwoo
448
448
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Lets start with the integral representation of the Polylogarithm $operatorname{Li}_s(z)$ which is given by
$$Gamma(s)operatorname{Li}_s(z)=int_0^{infty}frac{t^{s-1}}{e^t/z-1}mathrm dttag1$$
furthermore note the relations
$$frac{mathrm d}{mathrm dz}operatorname{Li}_s(z)=frac{operatorname{Li}_{s-1}(z)}{z}text{ and }operatorname{Li}_s(1)=zeta(s)tag2$$
Differentiate $(1)$ w.r.t. $z$ by using the first property of $(2)$ yields to
$$begin{align}
frac{mathrm d}{mathrm dz}Gamma(s)operatorname{Li}_s(z)&=frac {mathrm d}{mathrm dz}int_0^{infty}t^{s-1}frac{z}{e^t-z}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}t^{s-1}frac{(e^t-z)+z}{(e^t-z)^2}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}frac{t^{s-1}}{e^t-z}mathrm dt+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=Gamma(s)frac{operatorname{Li}_{s}(z)}{z}+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
therefore~int_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt&=Gamma(s)left[frac{operatorname{Li}_{s-1}(z)}{z^2}+frac{operatorname{Li}_{s}(z)}{z^2}right]
end{align}$$
Setting $s=3$ and $z=1$ and by including the second relation of $(2)$ gives us
$$begin{align}
int_0^{infty}frac{t^{3-1}}{(e^t-1)^2}mathrm dt&=Gamma(3)left[frac{operatorname{Li}_{3-1}(1)}{1^2}+frac{operatorname{Li}_{3}(1)}{1^2}right]\
int_0^{infty}frac{t^{2}}{(e^t-1)^2}mathrm dt&=2[zeta(2)-zeta(3)]
end{align}$$
$$therefore~int_0^{infty}frac{t^{2}}{(e^t-1)^2}dt=frac{pi^2}3-2zeta(3)=0.885~754...$$
Where the integral on the left equals your integral by setting $t=x$. Numerically WolframAlpha gives the same solution.
Your approach to $int_0^{infty}frac x{e^x-1}dx$ is also given through the special case $s=2$. Note that the derivative of the Dilogarithm $operatorname{Li}_2(z)$ is given by the term $-ln(1-x)/x$. Therefore your attempt was not wrong at all.
$endgroup$
add a comment |
$begingroup$
One more approach: the integral is $$int_0^inftyfrac{x^2 e^{-2x}}{(1-e^{-x})^2}dx=sum_{n=2}^infty(n-1)int_0^infty x^2 e^{-nx}dx=2sum_{n=2}^infty (n^{-2}-n^{-3})=2(zeta(2)-zeta(3)).$$
$endgroup$
add a comment |
$begingroup$
Withouth invoking the polylogarithm, for any $ninmathbb{N}$ and any $a>0$ we have
$$begin{eqnarray*} I(n,a)=int_{0}^{+infty}frac{x^n}{e^{ax}-1},dx&=&sum_{mgeq 1}int_{0}^{+infty}x^n e^{-ma x},dx\&=&sum_{mgeq 1}frac{n!}{(ma)^{n+1}}=frac{n!}{a^{n+1}}zeta(n+1)end{eqnarray*}$$
and by differentiation under the integral sign
$$ J(n,a)=frac{partial}{partial a} I(n,a)=int_{0}^{+infty}frac{-x^{n+1} e^{ax}}{(e^{ax}-1)^2},dx = -frac{(n+1)!}{a^{n+2}}zeta(n+1)$$
such that
$$begin{eqnarray*} int_{0}^{+infty}frac{x^{n+1}}{(e^{ax}-1)^2},dx &=& -left[I(n+1,a)+J(n,a)right]\&=&frac{(n+1)!}{a^{n+1}}zeta(n+1)-frac{(n+1)!}{a^{n+2}}zeta(n+2)end{eqnarray*}$$
and by setting $a=n=1$
$$ int_{0}^{+infty}frac{x^{2}}{(e^{x}-1)^2},dx =color{red}{2left(zeta(2)-zeta(3)right)}=sum_{ngeq 1}frac{2n}{(n+1)^3}=sum_{ngeq 1}frac{6n+5(-1)^{n}}{n^3binom{2n}{n}}. $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2959909%2fevaluate-int-0-infty-fracx2ex-12dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Lets start with the integral representation of the Polylogarithm $operatorname{Li}_s(z)$ which is given by
$$Gamma(s)operatorname{Li}_s(z)=int_0^{infty}frac{t^{s-1}}{e^t/z-1}mathrm dttag1$$
furthermore note the relations
$$frac{mathrm d}{mathrm dz}operatorname{Li}_s(z)=frac{operatorname{Li}_{s-1}(z)}{z}text{ and }operatorname{Li}_s(1)=zeta(s)tag2$$
Differentiate $(1)$ w.r.t. $z$ by using the first property of $(2)$ yields to
$$begin{align}
frac{mathrm d}{mathrm dz}Gamma(s)operatorname{Li}_s(z)&=frac {mathrm d}{mathrm dz}int_0^{infty}t^{s-1}frac{z}{e^t-z}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}t^{s-1}frac{(e^t-z)+z}{(e^t-z)^2}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}frac{t^{s-1}}{e^t-z}mathrm dt+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=Gamma(s)frac{operatorname{Li}_{s}(z)}{z}+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
therefore~int_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt&=Gamma(s)left[frac{operatorname{Li}_{s-1}(z)}{z^2}+frac{operatorname{Li}_{s}(z)}{z^2}right]
end{align}$$
Setting $s=3$ and $z=1$ and by including the second relation of $(2)$ gives us
$$begin{align}
int_0^{infty}frac{t^{3-1}}{(e^t-1)^2}mathrm dt&=Gamma(3)left[frac{operatorname{Li}_{3-1}(1)}{1^2}+frac{operatorname{Li}_{3}(1)}{1^2}right]\
int_0^{infty}frac{t^{2}}{(e^t-1)^2}mathrm dt&=2[zeta(2)-zeta(3)]
end{align}$$
$$therefore~int_0^{infty}frac{t^{2}}{(e^t-1)^2}dt=frac{pi^2}3-2zeta(3)=0.885~754...$$
Where the integral on the left equals your integral by setting $t=x$. Numerically WolframAlpha gives the same solution.
Your approach to $int_0^{infty}frac x{e^x-1}dx$ is also given through the special case $s=2$. Note that the derivative of the Dilogarithm $operatorname{Li}_2(z)$ is given by the term $-ln(1-x)/x$. Therefore your attempt was not wrong at all.
$endgroup$
add a comment |
$begingroup$
Lets start with the integral representation of the Polylogarithm $operatorname{Li}_s(z)$ which is given by
$$Gamma(s)operatorname{Li}_s(z)=int_0^{infty}frac{t^{s-1}}{e^t/z-1}mathrm dttag1$$
furthermore note the relations
$$frac{mathrm d}{mathrm dz}operatorname{Li}_s(z)=frac{operatorname{Li}_{s-1}(z)}{z}text{ and }operatorname{Li}_s(1)=zeta(s)tag2$$
Differentiate $(1)$ w.r.t. $z$ by using the first property of $(2)$ yields to
$$begin{align}
frac{mathrm d}{mathrm dz}Gamma(s)operatorname{Li}_s(z)&=frac {mathrm d}{mathrm dz}int_0^{infty}t^{s-1}frac{z}{e^t-z}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}t^{s-1}frac{(e^t-z)+z}{(e^t-z)^2}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}frac{t^{s-1}}{e^t-z}mathrm dt+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=Gamma(s)frac{operatorname{Li}_{s}(z)}{z}+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
therefore~int_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt&=Gamma(s)left[frac{operatorname{Li}_{s-1}(z)}{z^2}+frac{operatorname{Li}_{s}(z)}{z^2}right]
end{align}$$
Setting $s=3$ and $z=1$ and by including the second relation of $(2)$ gives us
$$begin{align}
int_0^{infty}frac{t^{3-1}}{(e^t-1)^2}mathrm dt&=Gamma(3)left[frac{operatorname{Li}_{3-1}(1)}{1^2}+frac{operatorname{Li}_{3}(1)}{1^2}right]\
int_0^{infty}frac{t^{2}}{(e^t-1)^2}mathrm dt&=2[zeta(2)-zeta(3)]
end{align}$$
$$therefore~int_0^{infty}frac{t^{2}}{(e^t-1)^2}dt=frac{pi^2}3-2zeta(3)=0.885~754...$$
Where the integral on the left equals your integral by setting $t=x$. Numerically WolframAlpha gives the same solution.
Your approach to $int_0^{infty}frac x{e^x-1}dx$ is also given through the special case $s=2$. Note that the derivative of the Dilogarithm $operatorname{Li}_2(z)$ is given by the term $-ln(1-x)/x$. Therefore your attempt was not wrong at all.
$endgroup$
add a comment |
$begingroup$
Lets start with the integral representation of the Polylogarithm $operatorname{Li}_s(z)$ which is given by
$$Gamma(s)operatorname{Li}_s(z)=int_0^{infty}frac{t^{s-1}}{e^t/z-1}mathrm dttag1$$
furthermore note the relations
$$frac{mathrm d}{mathrm dz}operatorname{Li}_s(z)=frac{operatorname{Li}_{s-1}(z)}{z}text{ and }operatorname{Li}_s(1)=zeta(s)tag2$$
Differentiate $(1)$ w.r.t. $z$ by using the first property of $(2)$ yields to
$$begin{align}
frac{mathrm d}{mathrm dz}Gamma(s)operatorname{Li}_s(z)&=frac {mathrm d}{mathrm dz}int_0^{infty}t^{s-1}frac{z}{e^t-z}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}t^{s-1}frac{(e^t-z)+z}{(e^t-z)^2}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}frac{t^{s-1}}{e^t-z}mathrm dt+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=Gamma(s)frac{operatorname{Li}_{s}(z)}{z}+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
therefore~int_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt&=Gamma(s)left[frac{operatorname{Li}_{s-1}(z)}{z^2}+frac{operatorname{Li}_{s}(z)}{z^2}right]
end{align}$$
Setting $s=3$ and $z=1$ and by including the second relation of $(2)$ gives us
$$begin{align}
int_0^{infty}frac{t^{3-1}}{(e^t-1)^2}mathrm dt&=Gamma(3)left[frac{operatorname{Li}_{3-1}(1)}{1^2}+frac{operatorname{Li}_{3}(1)}{1^2}right]\
int_0^{infty}frac{t^{2}}{(e^t-1)^2}mathrm dt&=2[zeta(2)-zeta(3)]
end{align}$$
$$therefore~int_0^{infty}frac{t^{2}}{(e^t-1)^2}dt=frac{pi^2}3-2zeta(3)=0.885~754...$$
Where the integral on the left equals your integral by setting $t=x$. Numerically WolframAlpha gives the same solution.
Your approach to $int_0^{infty}frac x{e^x-1}dx$ is also given through the special case $s=2$. Note that the derivative of the Dilogarithm $operatorname{Li}_2(z)$ is given by the term $-ln(1-x)/x$. Therefore your attempt was not wrong at all.
$endgroup$
Lets start with the integral representation of the Polylogarithm $operatorname{Li}_s(z)$ which is given by
$$Gamma(s)operatorname{Li}_s(z)=int_0^{infty}frac{t^{s-1}}{e^t/z-1}mathrm dttag1$$
furthermore note the relations
$$frac{mathrm d}{mathrm dz}operatorname{Li}_s(z)=frac{operatorname{Li}_{s-1}(z)}{z}text{ and }operatorname{Li}_s(1)=zeta(s)tag2$$
Differentiate $(1)$ w.r.t. $z$ by using the first property of $(2)$ yields to
$$begin{align}
frac{mathrm d}{mathrm dz}Gamma(s)operatorname{Li}_s(z)&=frac {mathrm d}{mathrm dz}int_0^{infty}t^{s-1}frac{z}{e^t-z}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}t^{s-1}frac{(e^t-z)+z}{(e^t-z)^2}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=int_0^{infty}frac{t^{s-1}}{e^t-z}mathrm dt+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
Gamma(s)frac{operatorname{Li}_{s-1}(z)}{z}&=Gamma(s)frac{operatorname{Li}_{s}(z)}{z}+zint_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt\
therefore~int_0^{infty}frac{t^{s-1}}{(e^t-z)^2}mathrm dt&=Gamma(s)left[frac{operatorname{Li}_{s-1}(z)}{z^2}+frac{operatorname{Li}_{s}(z)}{z^2}right]
end{align}$$
Setting $s=3$ and $z=1$ and by including the second relation of $(2)$ gives us
$$begin{align}
int_0^{infty}frac{t^{3-1}}{(e^t-1)^2}mathrm dt&=Gamma(3)left[frac{operatorname{Li}_{3-1}(1)}{1^2}+frac{operatorname{Li}_{3}(1)}{1^2}right]\
int_0^{infty}frac{t^{2}}{(e^t-1)^2}mathrm dt&=2[zeta(2)-zeta(3)]
end{align}$$
$$therefore~int_0^{infty}frac{t^{2}}{(e^t-1)^2}dt=frac{pi^2}3-2zeta(3)=0.885~754...$$
Where the integral on the left equals your integral by setting $t=x$. Numerically WolframAlpha gives the same solution.
Your approach to $int_0^{infty}frac x{e^x-1}dx$ is also given through the special case $s=2$. Note that the derivative of the Dilogarithm $operatorname{Li}_2(z)$ is given by the term $-ln(1-x)/x$. Therefore your attempt was not wrong at all.
edited Jan 26 at 12:01
answered Oct 17 '18 at 21:32
mrtaurhomrtaurho
6,04551641
6,04551641
add a comment |
add a comment |
$begingroup$
One more approach: the integral is $$int_0^inftyfrac{x^2 e^{-2x}}{(1-e^{-x})^2}dx=sum_{n=2}^infty(n-1)int_0^infty x^2 e^{-nx}dx=2sum_{n=2}^infty (n^{-2}-n^{-3})=2(zeta(2)-zeta(3)).$$
$endgroup$
add a comment |
$begingroup$
One more approach: the integral is $$int_0^inftyfrac{x^2 e^{-2x}}{(1-e^{-x})^2}dx=sum_{n=2}^infty(n-1)int_0^infty x^2 e^{-nx}dx=2sum_{n=2}^infty (n^{-2}-n^{-3})=2(zeta(2)-zeta(3)).$$
$endgroup$
add a comment |
$begingroup$
One more approach: the integral is $$int_0^inftyfrac{x^2 e^{-2x}}{(1-e^{-x})^2}dx=sum_{n=2}^infty(n-1)int_0^infty x^2 e^{-nx}dx=2sum_{n=2}^infty (n^{-2}-n^{-3})=2(zeta(2)-zeta(3)).$$
$endgroup$
One more approach: the integral is $$int_0^inftyfrac{x^2 e^{-2x}}{(1-e^{-x})^2}dx=sum_{n=2}^infty(n-1)int_0^infty x^2 e^{-nx}dx=2sum_{n=2}^infty (n^{-2}-n^{-3})=2(zeta(2)-zeta(3)).$$
answered Oct 18 '18 at 18:25
J.G.J.G.
31.2k23149
31.2k23149
add a comment |
add a comment |
$begingroup$
Withouth invoking the polylogarithm, for any $ninmathbb{N}$ and any $a>0$ we have
$$begin{eqnarray*} I(n,a)=int_{0}^{+infty}frac{x^n}{e^{ax}-1},dx&=&sum_{mgeq 1}int_{0}^{+infty}x^n e^{-ma x},dx\&=&sum_{mgeq 1}frac{n!}{(ma)^{n+1}}=frac{n!}{a^{n+1}}zeta(n+1)end{eqnarray*}$$
and by differentiation under the integral sign
$$ J(n,a)=frac{partial}{partial a} I(n,a)=int_{0}^{+infty}frac{-x^{n+1} e^{ax}}{(e^{ax}-1)^2},dx = -frac{(n+1)!}{a^{n+2}}zeta(n+1)$$
such that
$$begin{eqnarray*} int_{0}^{+infty}frac{x^{n+1}}{(e^{ax}-1)^2},dx &=& -left[I(n+1,a)+J(n,a)right]\&=&frac{(n+1)!}{a^{n+1}}zeta(n+1)-frac{(n+1)!}{a^{n+2}}zeta(n+2)end{eqnarray*}$$
and by setting $a=n=1$
$$ int_{0}^{+infty}frac{x^{2}}{(e^{x}-1)^2},dx =color{red}{2left(zeta(2)-zeta(3)right)}=sum_{ngeq 1}frac{2n}{(n+1)^3}=sum_{ngeq 1}frac{6n+5(-1)^{n}}{n^3binom{2n}{n}}. $$
$endgroup$
add a comment |
$begingroup$
Withouth invoking the polylogarithm, for any $ninmathbb{N}$ and any $a>0$ we have
$$begin{eqnarray*} I(n,a)=int_{0}^{+infty}frac{x^n}{e^{ax}-1},dx&=&sum_{mgeq 1}int_{0}^{+infty}x^n e^{-ma x},dx\&=&sum_{mgeq 1}frac{n!}{(ma)^{n+1}}=frac{n!}{a^{n+1}}zeta(n+1)end{eqnarray*}$$
and by differentiation under the integral sign
$$ J(n,a)=frac{partial}{partial a} I(n,a)=int_{0}^{+infty}frac{-x^{n+1} e^{ax}}{(e^{ax}-1)^2},dx = -frac{(n+1)!}{a^{n+2}}zeta(n+1)$$
such that
$$begin{eqnarray*} int_{0}^{+infty}frac{x^{n+1}}{(e^{ax}-1)^2},dx &=& -left[I(n+1,a)+J(n,a)right]\&=&frac{(n+1)!}{a^{n+1}}zeta(n+1)-frac{(n+1)!}{a^{n+2}}zeta(n+2)end{eqnarray*}$$
and by setting $a=n=1$
$$ int_{0}^{+infty}frac{x^{2}}{(e^{x}-1)^2},dx =color{red}{2left(zeta(2)-zeta(3)right)}=sum_{ngeq 1}frac{2n}{(n+1)^3}=sum_{ngeq 1}frac{6n+5(-1)^{n}}{n^3binom{2n}{n}}. $$
$endgroup$
add a comment |
$begingroup$
Withouth invoking the polylogarithm, for any $ninmathbb{N}$ and any $a>0$ we have
$$begin{eqnarray*} I(n,a)=int_{0}^{+infty}frac{x^n}{e^{ax}-1},dx&=&sum_{mgeq 1}int_{0}^{+infty}x^n e^{-ma x},dx\&=&sum_{mgeq 1}frac{n!}{(ma)^{n+1}}=frac{n!}{a^{n+1}}zeta(n+1)end{eqnarray*}$$
and by differentiation under the integral sign
$$ J(n,a)=frac{partial}{partial a} I(n,a)=int_{0}^{+infty}frac{-x^{n+1} e^{ax}}{(e^{ax}-1)^2},dx = -frac{(n+1)!}{a^{n+2}}zeta(n+1)$$
such that
$$begin{eqnarray*} int_{0}^{+infty}frac{x^{n+1}}{(e^{ax}-1)^2},dx &=& -left[I(n+1,a)+J(n,a)right]\&=&frac{(n+1)!}{a^{n+1}}zeta(n+1)-frac{(n+1)!}{a^{n+2}}zeta(n+2)end{eqnarray*}$$
and by setting $a=n=1$
$$ int_{0}^{+infty}frac{x^{2}}{(e^{x}-1)^2},dx =color{red}{2left(zeta(2)-zeta(3)right)}=sum_{ngeq 1}frac{2n}{(n+1)^3}=sum_{ngeq 1}frac{6n+5(-1)^{n}}{n^3binom{2n}{n}}. $$
$endgroup$
Withouth invoking the polylogarithm, for any $ninmathbb{N}$ and any $a>0$ we have
$$begin{eqnarray*} I(n,a)=int_{0}^{+infty}frac{x^n}{e^{ax}-1},dx&=&sum_{mgeq 1}int_{0}^{+infty}x^n e^{-ma x},dx\&=&sum_{mgeq 1}frac{n!}{(ma)^{n+1}}=frac{n!}{a^{n+1}}zeta(n+1)end{eqnarray*}$$
and by differentiation under the integral sign
$$ J(n,a)=frac{partial}{partial a} I(n,a)=int_{0}^{+infty}frac{-x^{n+1} e^{ax}}{(e^{ax}-1)^2},dx = -frac{(n+1)!}{a^{n+2}}zeta(n+1)$$
such that
$$begin{eqnarray*} int_{0}^{+infty}frac{x^{n+1}}{(e^{ax}-1)^2},dx &=& -left[I(n+1,a)+J(n,a)right]\&=&frac{(n+1)!}{a^{n+1}}zeta(n+1)-frac{(n+1)!}{a^{n+2}}zeta(n+2)end{eqnarray*}$$
and by setting $a=n=1$
$$ int_{0}^{+infty}frac{x^{2}}{(e^{x}-1)^2},dx =color{red}{2left(zeta(2)-zeta(3)right)}=sum_{ngeq 1}frac{2n}{(n+1)^3}=sum_{ngeq 1}frac{6n+5(-1)^{n}}{n^3binom{2n}{n}}. $$
edited Oct 18 '18 at 18:17
answered Oct 18 '18 at 18:11


Jack D'AurizioJack D'Aurizio
291k33284669
291k33284669
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2959909%2fevaluate-int-0-infty-fracx2ex-12dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown