Evaluate the limit: $lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}$
$begingroup$
$$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
I want to know how to evaluate without using L'Hopital Rule. I'm unable to factorise or simplify it suitably.
calculus limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
$$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
I want to know how to evaluate without using L'Hopital Rule. I'm unable to factorise or simplify it suitably.
calculus limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
$$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
I want to know how to evaluate without using L'Hopital Rule. I'm unable to factorise or simplify it suitably.
calculus limits-without-lhopital
$endgroup$
$$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
I want to know how to evaluate without using L'Hopital Rule. I'm unable to factorise or simplify it suitably.
calculus limits-without-lhopital
calculus limits-without-lhopital
edited Jan 26 at 14:51


Clement C.
50.9k33992
50.9k33992
asked Jan 26 at 14:33
user638473user638473
505
505
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}=1+frac{1}{(x+3)(sqrt{x+6}+3)}$$
$endgroup$
1
$begingroup$
Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
$endgroup$
– Michael Seifert
Jan 26 at 15:12
add a comment |
$begingroup$
An elementary approach: "recognize the derivative."
You can rewrite, for $xnotin{-3,3}$,
$$
frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)} tag{1}
$$
so the question boils down to computing $lim_{xto 3} frac{sqrt{x+6}-3}{x-3}$ (the rest is "under control").
Now, we can recognize a derivative here: let $fcolon[0,infty) to [0,infty)$ be defined by
$$
f(x) = sqrt{x+6}, qquad xgeq 0,. tag{2}
$$
Note that $f$ is differentiable, with $f'(x) = frac{1}{2sqrt{x+6}}$. Therefore,
$$
frac{1}{6} = frac{1}{2sqrt{9}} = f'(3) = lim_{xto 3} frac{f(x)-f(3)}{x-3} = lim_{xto 3} frac{sqrt{x+6}-3}{x-3} tag{3}
$$
giving the desired limit.
Putting it together, from (1) and (3) we get
$$
begin{align*}
lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
&= 1+ lim_{xto 3} frac{sqrt{x+6}-3}{(x-3)(x+3)}= 1+frac{1}{6}lim_{xto 3} frac{sqrt{x+6}-3}{x-3}
\&= 1+frac{1}{36} = boxed{frac{37}{36}}
end{align*}$$
$endgroup$
add a comment |
$begingroup$
$$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
$$ = lim_{xto 3} frac{x^{2}+sqrt{x+6}-9-3}{x^{2}-9}$$
$$ = lim_{xto 3} frac{x^{2}-9+sqrt{x+6}-3}{x^{2}-9}$$
$$ = lim_{xto 3} Big(frac{x^{2}-9}{x^{2}-9}+frac{sqrt{x+6}-3}{x^{2}-9}Big) $$
$$ = lim_{xto 3} frac{x^{2}-9}{x^{2}-9} + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
$$ = lim_{xto 3} 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
$$ = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
After rationalizing the numerator to remove the radical:
$$lim_{xto 3}frac{sqrt{x+6}-3}{x^{2}-9} cdot frac{sqrt{x+6}+3}{sqrt{x+6}+3} = lim_{xto 3}frac{x+6-9}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} $$
After factoring $ x^2 - 9 $, simplifying, and direct substitution:
$$ lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x-3)(x+3)(sqrt{x+6}+3)} = lim_{xto 3}frac{1}{(x+3)(sqrt{x+6}+3)} = frac{1}{6cdot 6} = frac{1}{36}$$
Thus $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9} = 1 + frac{1}{36} = frac{36}{36} + frac{1}{36} $$
$$= frac{37}{36}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088318%2fevaluate-the-limit-lim-x-to-3-fracx2-sqrtx6-12x2-9%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}=1+frac{1}{(x+3)(sqrt{x+6}+3)}$$
$endgroup$
1
$begingroup$
Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
$endgroup$
– Michael Seifert
Jan 26 at 15:12
add a comment |
$begingroup$
$$frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}=1+frac{1}{(x+3)(sqrt{x+6}+3)}$$
$endgroup$
1
$begingroup$
Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
$endgroup$
– Michael Seifert
Jan 26 at 15:12
add a comment |
$begingroup$
$$frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}=1+frac{1}{(x+3)(sqrt{x+6}+3)}$$
$endgroup$
$$frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}=1+frac{1}{(x+3)(sqrt{x+6}+3)}$$
answered Jan 26 at 14:55


Aleksas DomarkasAleksas Domarkas
1,54817
1,54817
1
$begingroup$
Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
$endgroup$
– Michael Seifert
Jan 26 at 15:12
add a comment |
1
$begingroup$
Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
$endgroup$
– Michael Seifert
Jan 26 at 15:12
1
1
$begingroup$
Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
$endgroup$
– Michael Seifert
Jan 26 at 15:12
$begingroup$
Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
$endgroup$
– Michael Seifert
Jan 26 at 15:12
add a comment |
$begingroup$
An elementary approach: "recognize the derivative."
You can rewrite, for $xnotin{-3,3}$,
$$
frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)} tag{1}
$$
so the question boils down to computing $lim_{xto 3} frac{sqrt{x+6}-3}{x-3}$ (the rest is "under control").
Now, we can recognize a derivative here: let $fcolon[0,infty) to [0,infty)$ be defined by
$$
f(x) = sqrt{x+6}, qquad xgeq 0,. tag{2}
$$
Note that $f$ is differentiable, with $f'(x) = frac{1}{2sqrt{x+6}}$. Therefore,
$$
frac{1}{6} = frac{1}{2sqrt{9}} = f'(3) = lim_{xto 3} frac{f(x)-f(3)}{x-3} = lim_{xto 3} frac{sqrt{x+6}-3}{x-3} tag{3}
$$
giving the desired limit.
Putting it together, from (1) and (3) we get
$$
begin{align*}
lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
&= 1+ lim_{xto 3} frac{sqrt{x+6}-3}{(x-3)(x+3)}= 1+frac{1}{6}lim_{xto 3} frac{sqrt{x+6}-3}{x-3}
\&= 1+frac{1}{36} = boxed{frac{37}{36}}
end{align*}$$
$endgroup$
add a comment |
$begingroup$
An elementary approach: "recognize the derivative."
You can rewrite, for $xnotin{-3,3}$,
$$
frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)} tag{1}
$$
so the question boils down to computing $lim_{xto 3} frac{sqrt{x+6}-3}{x-3}$ (the rest is "under control").
Now, we can recognize a derivative here: let $fcolon[0,infty) to [0,infty)$ be defined by
$$
f(x) = sqrt{x+6}, qquad xgeq 0,. tag{2}
$$
Note that $f$ is differentiable, with $f'(x) = frac{1}{2sqrt{x+6}}$. Therefore,
$$
frac{1}{6} = frac{1}{2sqrt{9}} = f'(3) = lim_{xto 3} frac{f(x)-f(3)}{x-3} = lim_{xto 3} frac{sqrt{x+6}-3}{x-3} tag{3}
$$
giving the desired limit.
Putting it together, from (1) and (3) we get
$$
begin{align*}
lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
&= 1+ lim_{xto 3} frac{sqrt{x+6}-3}{(x-3)(x+3)}= 1+frac{1}{6}lim_{xto 3} frac{sqrt{x+6}-3}{x-3}
\&= 1+frac{1}{36} = boxed{frac{37}{36}}
end{align*}$$
$endgroup$
add a comment |
$begingroup$
An elementary approach: "recognize the derivative."
You can rewrite, for $xnotin{-3,3}$,
$$
frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)} tag{1}
$$
so the question boils down to computing $lim_{xto 3} frac{sqrt{x+6}-3}{x-3}$ (the rest is "under control").
Now, we can recognize a derivative here: let $fcolon[0,infty) to [0,infty)$ be defined by
$$
f(x) = sqrt{x+6}, qquad xgeq 0,. tag{2}
$$
Note that $f$ is differentiable, with $f'(x) = frac{1}{2sqrt{x+6}}$. Therefore,
$$
frac{1}{6} = frac{1}{2sqrt{9}} = f'(3) = lim_{xto 3} frac{f(x)-f(3)}{x-3} = lim_{xto 3} frac{sqrt{x+6}-3}{x-3} tag{3}
$$
giving the desired limit.
Putting it together, from (1) and (3) we get
$$
begin{align*}
lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
&= 1+ lim_{xto 3} frac{sqrt{x+6}-3}{(x-3)(x+3)}= 1+frac{1}{6}lim_{xto 3} frac{sqrt{x+6}-3}{x-3}
\&= 1+frac{1}{36} = boxed{frac{37}{36}}
end{align*}$$
$endgroup$
An elementary approach: "recognize the derivative."
You can rewrite, for $xnotin{-3,3}$,
$$
frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{x^{2}-9}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}
= 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)} tag{1}
$$
so the question boils down to computing $lim_{xto 3} frac{sqrt{x+6}-3}{x-3}$ (the rest is "under control").
Now, we can recognize a derivative here: let $fcolon[0,infty) to [0,infty)$ be defined by
$$
f(x) = sqrt{x+6}, qquad xgeq 0,. tag{2}
$$
Note that $f$ is differentiable, with $f'(x) = frac{1}{2sqrt{x+6}}$. Therefore,
$$
frac{1}{6} = frac{1}{2sqrt{9}} = f'(3) = lim_{xto 3} frac{f(x)-f(3)}{x-3} = lim_{xto 3} frac{sqrt{x+6}-3}{x-3} tag{3}
$$
giving the desired limit.
Putting it together, from (1) and (3) we get
$$
begin{align*}
lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
&= 1+ lim_{xto 3} frac{sqrt{x+6}-3}{(x-3)(x+3)}= 1+frac{1}{6}lim_{xto 3} frac{sqrt{x+6}-3}{x-3}
\&= 1+frac{1}{36} = boxed{frac{37}{36}}
end{align*}$$
edited Jan 26 at 14:51
answered Jan 26 at 14:45


Clement C.Clement C.
50.9k33992
50.9k33992
add a comment |
add a comment |
$begingroup$
$$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
$$ = lim_{xto 3} frac{x^{2}+sqrt{x+6}-9-3}{x^{2}-9}$$
$$ = lim_{xto 3} frac{x^{2}-9+sqrt{x+6}-3}{x^{2}-9}$$
$$ = lim_{xto 3} Big(frac{x^{2}-9}{x^{2}-9}+frac{sqrt{x+6}-3}{x^{2}-9}Big) $$
$$ = lim_{xto 3} frac{x^{2}-9}{x^{2}-9} + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
$$ = lim_{xto 3} 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
$$ = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
After rationalizing the numerator to remove the radical:
$$lim_{xto 3}frac{sqrt{x+6}-3}{x^{2}-9} cdot frac{sqrt{x+6}+3}{sqrt{x+6}+3} = lim_{xto 3}frac{x+6-9}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} $$
After factoring $ x^2 - 9 $, simplifying, and direct substitution:
$$ lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x-3)(x+3)(sqrt{x+6}+3)} = lim_{xto 3}frac{1}{(x+3)(sqrt{x+6}+3)} = frac{1}{6cdot 6} = frac{1}{36}$$
Thus $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9} = 1 + frac{1}{36} = frac{36}{36} + frac{1}{36} $$
$$= frac{37}{36}$$
$endgroup$
add a comment |
$begingroup$
$$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
$$ = lim_{xto 3} frac{x^{2}+sqrt{x+6}-9-3}{x^{2}-9}$$
$$ = lim_{xto 3} frac{x^{2}-9+sqrt{x+6}-3}{x^{2}-9}$$
$$ = lim_{xto 3} Big(frac{x^{2}-9}{x^{2}-9}+frac{sqrt{x+6}-3}{x^{2}-9}Big) $$
$$ = lim_{xto 3} frac{x^{2}-9}{x^{2}-9} + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
$$ = lim_{xto 3} 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
$$ = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
After rationalizing the numerator to remove the radical:
$$lim_{xto 3}frac{sqrt{x+6}-3}{x^{2}-9} cdot frac{sqrt{x+6}+3}{sqrt{x+6}+3} = lim_{xto 3}frac{x+6-9}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} $$
After factoring $ x^2 - 9 $, simplifying, and direct substitution:
$$ lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x-3)(x+3)(sqrt{x+6}+3)} = lim_{xto 3}frac{1}{(x+3)(sqrt{x+6}+3)} = frac{1}{6cdot 6} = frac{1}{36}$$
Thus $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9} = 1 + frac{1}{36} = frac{36}{36} + frac{1}{36} $$
$$= frac{37}{36}$$
$endgroup$
add a comment |
$begingroup$
$$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
$$ = lim_{xto 3} frac{x^{2}+sqrt{x+6}-9-3}{x^{2}-9}$$
$$ = lim_{xto 3} frac{x^{2}-9+sqrt{x+6}-3}{x^{2}-9}$$
$$ = lim_{xto 3} Big(frac{x^{2}-9}{x^{2}-9}+frac{sqrt{x+6}-3}{x^{2}-9}Big) $$
$$ = lim_{xto 3} frac{x^{2}-9}{x^{2}-9} + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
$$ = lim_{xto 3} 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
$$ = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
After rationalizing the numerator to remove the radical:
$$lim_{xto 3}frac{sqrt{x+6}-3}{x^{2}-9} cdot frac{sqrt{x+6}+3}{sqrt{x+6}+3} = lim_{xto 3}frac{x+6-9}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} $$
After factoring $ x^2 - 9 $, simplifying, and direct substitution:
$$ lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x-3)(x+3)(sqrt{x+6}+3)} = lim_{xto 3}frac{1}{(x+3)(sqrt{x+6}+3)} = frac{1}{6cdot 6} = frac{1}{36}$$
Thus $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9} = 1 + frac{1}{36} = frac{36}{36} + frac{1}{36} $$
$$= frac{37}{36}$$
$endgroup$
$$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
$$ = lim_{xto 3} frac{x^{2}+sqrt{x+6}-9-3}{x^{2}-9}$$
$$ = lim_{xto 3} frac{x^{2}-9+sqrt{x+6}-3}{x^{2}-9}$$
$$ = lim_{xto 3} Big(frac{x^{2}-9}{x^{2}-9}+frac{sqrt{x+6}-3}{x^{2}-9}Big) $$
$$ = lim_{xto 3} frac{x^{2}-9}{x^{2}-9} + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
$$ = lim_{xto 3} 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
$$ = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
After rationalizing the numerator to remove the radical:
$$lim_{xto 3}frac{sqrt{x+6}-3}{x^{2}-9} cdot frac{sqrt{x+6}+3}{sqrt{x+6}+3} = lim_{xto 3}frac{x+6-9}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} $$
After factoring $ x^2 - 9 $, simplifying, and direct substitution:
$$ lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x-3)(x+3)(sqrt{x+6}+3)} = lim_{xto 3}frac{1}{(x+3)(sqrt{x+6}+3)} = frac{1}{6cdot 6} = frac{1}{36}$$
Thus $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9} = 1 + frac{1}{36} = frac{36}{36} + frac{1}{36} $$
$$= frac{37}{36}$$
edited Jan 27 at 21:06
answered Jan 26 at 16:30
Marvin CohenMarvin Cohen
162117
162117
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088318%2fevaluate-the-limit-lim-x-to-3-fracx2-sqrtx6-12x2-9%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown