Evaluate the limit: $lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}$












1












$begingroup$


$$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$



I want to know how to evaluate without using L'Hopital Rule. I'm unable to factorise or simplify it suitably.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$



    I want to know how to evaluate without using L'Hopital Rule. I'm unable to factorise or simplify it suitably.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$



      I want to know how to evaluate without using L'Hopital Rule. I'm unable to factorise or simplify it suitably.










      share|cite|improve this question











      $endgroup$




      $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$



      I want to know how to evaluate without using L'Hopital Rule. I'm unable to factorise or simplify it suitably.







      calculus limits-without-lhopital






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 26 at 14:51









      Clement C.

      50.9k33992




      50.9k33992










      asked Jan 26 at 14:33









      user638473user638473

      505




      505






















          3 Answers
          3






          active

          oldest

          votes


















          4












          $begingroup$

          $$frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
          = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}=1+frac{1}{(x+3)(sqrt{x+6}+3)}$$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
            $endgroup$
            – Michael Seifert
            Jan 26 at 15:12



















          4












          $begingroup$

          An elementary approach: "recognize the derivative."



          You can rewrite, for $xnotin{-3,3}$,
          $$
          frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
          = 1+ frac{sqrt{x+6}-3}{x^{2}-9}
          = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}
          = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)} tag{1}
          $$

          so the question boils down to computing $lim_{xto 3} frac{sqrt{x+6}-3}{x-3}$ (the rest is "under control").



          Now, we can recognize a derivative here: let $fcolon[0,infty) to [0,infty)$ be defined by
          $$
          f(x) = sqrt{x+6}, qquad xgeq 0,. tag{2}
          $$

          Note that $f$ is differentiable, with $f'(x) = frac{1}{2sqrt{x+6}}$. Therefore,
          $$
          frac{1}{6} = frac{1}{2sqrt{9}} = f'(3) = lim_{xto 3} frac{f(x)-f(3)}{x-3} = lim_{xto 3} frac{sqrt{x+6}-3}{x-3} tag{3}
          $$

          giving the desired limit.



          Putting it together, from (1) and (3) we get
          $$
          begin{align*}
          lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
          &= 1+ lim_{xto 3} frac{sqrt{x+6}-3}{(x-3)(x+3)}= 1+frac{1}{6}lim_{xto 3} frac{sqrt{x+6}-3}{x-3}
          \&= 1+frac{1}{36} = boxed{frac{37}{36}}
          end{align*}$$






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
            $$ = lim_{xto 3} frac{x^{2}+sqrt{x+6}-9-3}{x^{2}-9}$$
            $$ = lim_{xto 3} frac{x^{2}-9+sqrt{x+6}-3}{x^{2}-9}$$
            $$ = lim_{xto 3} Big(frac{x^{2}-9}{x^{2}-9}+frac{sqrt{x+6}-3}{x^{2}-9}Big) $$
            $$ = lim_{xto 3} frac{x^{2}-9}{x^{2}-9} + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
            $$ = lim_{xto 3} 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
            $$ = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$



            After rationalizing the numerator to remove the radical:
            $$lim_{xto 3}frac{sqrt{x+6}-3}{x^{2}-9} cdot frac{sqrt{x+6}+3}{sqrt{x+6}+3} = lim_{xto 3}frac{x+6-9}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} $$



            After factoring $ x^2 - 9 $, simplifying, and direct substitution:
            $$ lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x-3)(x+3)(sqrt{x+6}+3)} = lim_{xto 3}frac{1}{(x+3)(sqrt{x+6}+3)} = frac{1}{6cdot 6} = frac{1}{36}$$



            Thus $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9} = 1 + frac{1}{36} = frac{36}{36} + frac{1}{36} $$
            $$= frac{37}{36}$$






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088318%2fevaluate-the-limit-lim-x-to-3-fracx2-sqrtx6-12x2-9%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              $$frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
              = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}=1+frac{1}{(x+3)(sqrt{x+6}+3)}$$






              share|cite|improve this answer









              $endgroup$









              • 1




                $begingroup$
                Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
                $endgroup$
                – Michael Seifert
                Jan 26 at 15:12
















              4












              $begingroup$

              $$frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
              = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}=1+frac{1}{(x+3)(sqrt{x+6}+3)}$$






              share|cite|improve this answer









              $endgroup$









              • 1




                $begingroup$
                Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
                $endgroup$
                – Michael Seifert
                Jan 26 at 15:12














              4












              4








              4





              $begingroup$

              $$frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
              = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}=1+frac{1}{(x+3)(sqrt{x+6}+3)}$$






              share|cite|improve this answer









              $endgroup$



              $$frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
              = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}=1+frac{1}{(x+3)(sqrt{x+6}+3)}$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 26 at 14:55









              Aleksas DomarkasAleksas Domarkas

              1,54817




              1,54817








              • 1




                $begingroup$
                Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
                $endgroup$
                – Michael Seifert
                Jan 26 at 15:12














              • 1




                $begingroup$
                Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
                $endgroup$
                – Michael Seifert
                Jan 26 at 15:12








              1




              1




              $begingroup$
              Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
              $endgroup$
              – Michael Seifert
              Jan 26 at 15:12




              $begingroup$
              Just in case it's not clear, this relies on the fact that $(sqrt{x+6} - 3)(sqrt{x+6} + 3) = (x+6) - 3^2 = x - 3$.
              $endgroup$
              – Michael Seifert
              Jan 26 at 15:12











              4












              $begingroup$

              An elementary approach: "recognize the derivative."



              You can rewrite, for $xnotin{-3,3}$,
              $$
              frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
              = 1+ frac{sqrt{x+6}-3}{x^{2}-9}
              = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}
              = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)} tag{1}
              $$

              so the question boils down to computing $lim_{xto 3} frac{sqrt{x+6}-3}{x-3}$ (the rest is "under control").



              Now, we can recognize a derivative here: let $fcolon[0,infty) to [0,infty)$ be defined by
              $$
              f(x) = sqrt{x+6}, qquad xgeq 0,. tag{2}
              $$

              Note that $f$ is differentiable, with $f'(x) = frac{1}{2sqrt{x+6}}$. Therefore,
              $$
              frac{1}{6} = frac{1}{2sqrt{9}} = f'(3) = lim_{xto 3} frac{f(x)-f(3)}{x-3} = lim_{xto 3} frac{sqrt{x+6}-3}{x-3} tag{3}
              $$

              giving the desired limit.



              Putting it together, from (1) and (3) we get
              $$
              begin{align*}
              lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
              &= 1+ lim_{xto 3} frac{sqrt{x+6}-3}{(x-3)(x+3)}= 1+frac{1}{6}lim_{xto 3} frac{sqrt{x+6}-3}{x-3}
              \&= 1+frac{1}{36} = boxed{frac{37}{36}}
              end{align*}$$






              share|cite|improve this answer











              $endgroup$


















                4












                $begingroup$

                An elementary approach: "recognize the derivative."



                You can rewrite, for $xnotin{-3,3}$,
                $$
                frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
                = 1+ frac{sqrt{x+6}-3}{x^{2}-9}
                = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}
                = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)} tag{1}
                $$

                so the question boils down to computing $lim_{xto 3} frac{sqrt{x+6}-3}{x-3}$ (the rest is "under control").



                Now, we can recognize a derivative here: let $fcolon[0,infty) to [0,infty)$ be defined by
                $$
                f(x) = sqrt{x+6}, qquad xgeq 0,. tag{2}
                $$

                Note that $f$ is differentiable, with $f'(x) = frac{1}{2sqrt{x+6}}$. Therefore,
                $$
                frac{1}{6} = frac{1}{2sqrt{9}} = f'(3) = lim_{xto 3} frac{f(x)-f(3)}{x-3} = lim_{xto 3} frac{sqrt{x+6}-3}{x-3} tag{3}
                $$

                giving the desired limit.



                Putting it together, from (1) and (3) we get
                $$
                begin{align*}
                lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
                &= 1+ lim_{xto 3} frac{sqrt{x+6}-3}{(x-3)(x+3)}= 1+frac{1}{6}lim_{xto 3} frac{sqrt{x+6}-3}{x-3}
                \&= 1+frac{1}{36} = boxed{frac{37}{36}}
                end{align*}$$






                share|cite|improve this answer











                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  An elementary approach: "recognize the derivative."



                  You can rewrite, for $xnotin{-3,3}$,
                  $$
                  frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
                  = 1+ frac{sqrt{x+6}-3}{x^{2}-9}
                  = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}
                  = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)} tag{1}
                  $$

                  so the question boils down to computing $lim_{xto 3} frac{sqrt{x+6}-3}{x-3}$ (the rest is "under control").



                  Now, we can recognize a derivative here: let $fcolon[0,infty) to [0,infty)$ be defined by
                  $$
                  f(x) = sqrt{x+6}, qquad xgeq 0,. tag{2}
                  $$

                  Note that $f$ is differentiable, with $f'(x) = frac{1}{2sqrt{x+6}}$. Therefore,
                  $$
                  frac{1}{6} = frac{1}{2sqrt{9}} = f'(3) = lim_{xto 3} frac{f(x)-f(3)}{x-3} = lim_{xto 3} frac{sqrt{x+6}-3}{x-3} tag{3}
                  $$

                  giving the desired limit.



                  Putting it together, from (1) and (3) we get
                  $$
                  begin{align*}
                  lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
                  &= 1+ lim_{xto 3} frac{sqrt{x+6}-3}{(x-3)(x+3)}= 1+frac{1}{6}lim_{xto 3} frac{sqrt{x+6}-3}{x-3}
                  \&= 1+frac{1}{36} = boxed{frac{37}{36}}
                  end{align*}$$






                  share|cite|improve this answer











                  $endgroup$



                  An elementary approach: "recognize the derivative."



                  You can rewrite, for $xnotin{-3,3}$,
                  $$
                  frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
                  = 1+ frac{sqrt{x+6}-3}{x^{2}-9}
                  = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)}
                  = 1+ frac{sqrt{x+6}-3}{(x-3)(x+3)} tag{1}
                  $$

                  so the question boils down to computing $lim_{xto 3} frac{sqrt{x+6}-3}{x-3}$ (the rest is "under control").



                  Now, we can recognize a derivative here: let $fcolon[0,infty) to [0,infty)$ be defined by
                  $$
                  f(x) = sqrt{x+6}, qquad xgeq 0,. tag{2}
                  $$

                  Note that $f$ is differentiable, with $f'(x) = frac{1}{2sqrt{x+6}}$. Therefore,
                  $$
                  frac{1}{6} = frac{1}{2sqrt{9}} = f'(3) = lim_{xto 3} frac{f(x)-f(3)}{x-3} = lim_{xto 3} frac{sqrt{x+6}-3}{x-3} tag{3}
                  $$

                  giving the desired limit.



                  Putting it together, from (1) and (3) we get
                  $$
                  begin{align*}
                  lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9}
                  &= 1+ lim_{xto 3} frac{sqrt{x+6}-3}{(x-3)(x+3)}= 1+frac{1}{6}lim_{xto 3} frac{sqrt{x+6}-3}{x-3}
                  \&= 1+frac{1}{36} = boxed{frac{37}{36}}
                  end{align*}$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 26 at 14:51

























                  answered Jan 26 at 14:45









                  Clement C.Clement C.

                  50.9k33992




                  50.9k33992























                      1












                      $begingroup$

                      $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
                      $$ = lim_{xto 3} frac{x^{2}+sqrt{x+6}-9-3}{x^{2}-9}$$
                      $$ = lim_{xto 3} frac{x^{2}-9+sqrt{x+6}-3}{x^{2}-9}$$
                      $$ = lim_{xto 3} Big(frac{x^{2}-9}{x^{2}-9}+frac{sqrt{x+6}-3}{x^{2}-9}Big) $$
                      $$ = lim_{xto 3} frac{x^{2}-9}{x^{2}-9} + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
                      $$ = lim_{xto 3} 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
                      $$ = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$



                      After rationalizing the numerator to remove the radical:
                      $$lim_{xto 3}frac{sqrt{x+6}-3}{x^{2}-9} cdot frac{sqrt{x+6}+3}{sqrt{x+6}+3} = lim_{xto 3}frac{x+6-9}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} $$



                      After factoring $ x^2 - 9 $, simplifying, and direct substitution:
                      $$ lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x-3)(x+3)(sqrt{x+6}+3)} = lim_{xto 3}frac{1}{(x+3)(sqrt{x+6}+3)} = frac{1}{6cdot 6} = frac{1}{36}$$



                      Thus $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9} = 1 + frac{1}{36} = frac{36}{36} + frac{1}{36} $$
                      $$= frac{37}{36}$$






                      share|cite|improve this answer











                      $endgroup$


















                        1












                        $begingroup$

                        $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
                        $$ = lim_{xto 3} frac{x^{2}+sqrt{x+6}-9-3}{x^{2}-9}$$
                        $$ = lim_{xto 3} frac{x^{2}-9+sqrt{x+6}-3}{x^{2}-9}$$
                        $$ = lim_{xto 3} Big(frac{x^{2}-9}{x^{2}-9}+frac{sqrt{x+6}-3}{x^{2}-9}Big) $$
                        $$ = lim_{xto 3} frac{x^{2}-9}{x^{2}-9} + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
                        $$ = lim_{xto 3} 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
                        $$ = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$



                        After rationalizing the numerator to remove the radical:
                        $$lim_{xto 3}frac{sqrt{x+6}-3}{x^{2}-9} cdot frac{sqrt{x+6}+3}{sqrt{x+6}+3} = lim_{xto 3}frac{x+6-9}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} $$



                        After factoring $ x^2 - 9 $, simplifying, and direct substitution:
                        $$ lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x-3)(x+3)(sqrt{x+6}+3)} = lim_{xto 3}frac{1}{(x+3)(sqrt{x+6}+3)} = frac{1}{6cdot 6} = frac{1}{36}$$



                        Thus $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9} = 1 + frac{1}{36} = frac{36}{36} + frac{1}{36} $$
                        $$= frac{37}{36}$$






                        share|cite|improve this answer











                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
                          $$ = lim_{xto 3} frac{x^{2}+sqrt{x+6}-9-3}{x^{2}-9}$$
                          $$ = lim_{xto 3} frac{x^{2}-9+sqrt{x+6}-3}{x^{2}-9}$$
                          $$ = lim_{xto 3} Big(frac{x^{2}-9}{x^{2}-9}+frac{sqrt{x+6}-3}{x^{2}-9}Big) $$
                          $$ = lim_{xto 3} frac{x^{2}-9}{x^{2}-9} + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
                          $$ = lim_{xto 3} 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
                          $$ = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$



                          After rationalizing the numerator to remove the radical:
                          $$lim_{xto 3}frac{sqrt{x+6}-3}{x^{2}-9} cdot frac{sqrt{x+6}+3}{sqrt{x+6}+3} = lim_{xto 3}frac{x+6-9}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} $$



                          After factoring $ x^2 - 9 $, simplifying, and direct substitution:
                          $$ lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x-3)(x+3)(sqrt{x+6}+3)} = lim_{xto 3}frac{1}{(x+3)(sqrt{x+6}+3)} = frac{1}{6cdot 6} = frac{1}{36}$$



                          Thus $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9} = 1 + frac{1}{36} = frac{36}{36} + frac{1}{36} $$
                          $$= frac{37}{36}$$






                          share|cite|improve this answer











                          $endgroup$



                          $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} $$
                          $$ = lim_{xto 3} frac{x^{2}+sqrt{x+6}-9-3}{x^{2}-9}$$
                          $$ = lim_{xto 3} frac{x^{2}-9+sqrt{x+6}-3}{x^{2}-9}$$
                          $$ = lim_{xto 3} Big(frac{x^{2}-9}{x^{2}-9}+frac{sqrt{x+6}-3}{x^{2}-9}Big) $$
                          $$ = lim_{xto 3} frac{x^{2}-9}{x^{2}-9} + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
                          $$ = lim_{xto 3} 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$
                          $$ = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9}$$



                          After rationalizing the numerator to remove the radical:
                          $$lim_{xto 3}frac{sqrt{x+6}-3}{x^{2}-9} cdot frac{sqrt{x+6}+3}{sqrt{x+6}+3} = lim_{xto 3}frac{x+6-9}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} $$



                          After factoring $ x^2 - 9 $, simplifying, and direct substitution:
                          $$ lim_{xto 3}frac{x-3}{(x^{2}-9)(sqrt{x+6}+3)} = lim_{xto 3}frac{x-3}{(x-3)(x+3)(sqrt{x+6}+3)} = lim_{xto 3}frac{1}{(x+3)(sqrt{x+6}+3)} = frac{1}{6cdot 6} = frac{1}{36}$$



                          Thus $$lim_{xto 3} frac{x^{2}+sqrt{x+6}-12}{x^{2}-9} = 1 + lim_{xto 3} frac{sqrt{x+6}-3}{x^{2}-9} = 1 + frac{1}{36} = frac{36}{36} + frac{1}{36} $$
                          $$= frac{37}{36}$$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jan 27 at 21:06

























                          answered Jan 26 at 16:30









                          Marvin CohenMarvin Cohen

                          162117




                          162117






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088318%2fevaluate-the-limit-lim-x-to-3-fracx2-sqrtx6-12x2-9%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              How to fix TextFormField cause rebuild widget in Flutter

                              Npm cannot find a required file even through it is in the searched directory