Evaluate $sum_{n=1}^{infty}frac{psi^{''}(n)}{2n-1}$, where $psi^{''}(n)$ is 2nd derivative of digamma...
$begingroup$
Does the following sum have a closed form?
$$sum_{n=1}^{infty}frac{psi^{"}(n)}{2n-1},$$ where $psi^{"}(n)$ is 2nd derivative of digamma function.
sequences-and-series summation digamma-function
$endgroup$
add a comment |
$begingroup$
Does the following sum have a closed form?
$$sum_{n=1}^{infty}frac{psi^{"}(n)}{2n-1},$$ where $psi^{"}(n)$ is 2nd derivative of digamma function.
sequences-and-series summation digamma-function
$endgroup$
add a comment |
$begingroup$
Does the following sum have a closed form?
$$sum_{n=1}^{infty}frac{psi^{"}(n)}{2n-1},$$ where $psi^{"}(n)$ is 2nd derivative of digamma function.
sequences-and-series summation digamma-function
$endgroup$
Does the following sum have a closed form?
$$sum_{n=1}^{infty}frac{psi^{"}(n)}{2n-1},$$ where $psi^{"}(n)$ is 2nd derivative of digamma function.
sequences-and-series summation digamma-function
sequences-and-series summation digamma-function
edited Jan 27 at 13:05
p4sch
5,460318
5,460318
asked Jan 26 at 11:40


ben tenysonben tenyson
414
414
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The $n$-th derivate of the digamma function is known as "polygamma function of order $n$-th". Moreover, we have the integral representation
$$psi^{(m)}(x) = (-1)^{m+1} int_0^infty frac{t^m}{1-e^{-t}} e^{-xt} , mathrm{d} t.$$
Using the monotone convergence theorem, we get
$$label{1} tag{1}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} sum_{n=1}^infty frac{e^{-nt}}{2n-1} , mathrm{d}t. $$
Since
$$sum_{n=1}^infty e^{-(n-1/2)t} = frac{e^{t/2}}{e^t-1},$$
we get by integration
$$ sum_{n=1}^infty frac{e^{-nt}}{2n-1} = frac{e^{-t/2}}{2} int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s.$$
But we have
$$int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s = 2 int_{e^{t/2}}^infty frac{1}{x^2-1} , mathrm{d} x = 2 mathrm{arcoth}(e^{t/2}) $$
and therefore
$$sum_{n=1}^infty frac{e^{-nt}}{2n-1} = e^{-t/2} mathrm{arcoth}(e^{t/2}).$$
Note that we have proven that $$mathrm{arcoth}(x) = sum_{n=1}^infty frac{x^{-(2n-1)}}{2n-1} quad text{for} quad |x| >1.$$
Thus, we can rewrite eqref{1} by
$$tag{2}label{2}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t.$$
Changing variables we see that
begin{align}
- int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t = - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x.
end{align}
Using $mathrm{artanh}(1/x) = mathrm{coth}(x)$ we can rewrite the integral also by
$$ - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x= 8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y.$$
With the help of ComplexYetTrivial's comment we can compute the last integral explicitly.
Using partial integration in the last line we get that
begin{align}
8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y &= left.-4 mathrm{artanh}(y)^2 ln(y)^2 right|_{y=0}^1 + 8 int_0mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y \
&= 8 int_0^1mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y.
end{align}
Since $$mathrm{artanh}(y) = frac{1}{2} left( ln(y+1)-ln(1-y) right) $$
we get that eqref{2} is equal to
$$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y - 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y + 2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y $$
The remaining integrals are evaluated here, here and here. In fact, we have
$$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y = - zeta(4) = - frac{pi^4}{90} $$
and
$$- 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y = frac{3}{40} pi^4 - 7 log(2) zeta(3) + frac{pi^2 log(2)^2}{3}- frac{log(2)^4}{3} - 8 mathrm{Li}_4(1/2)$$
and also
$$2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y = frac{pi^2}{12} - 8 mathrm{Li}_4(1/2) -7 log(2) zeta(3)+ frac{pi^2 log(2)^2}{3} - frac{ln(2)^4}{3} $$
Finally, we see that eqref{2} can be written as
$$frac{53}{360} pi^4 - 14 log(2) zeta(3) + frac{2}{3} [pi^2 -log(2)^2] log(2)^2 - 16 mathrm{Li}_4(1/2).$$
$endgroup$
$begingroup$
I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
$endgroup$
– ben tenyson
Jan 26 at 14:51
4
$begingroup$
The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
$endgroup$
– ComplexYetTrivial
Jan 26 at 15:04
$begingroup$
The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
$endgroup$
– p4sch
Jan 27 at 12:59
$begingroup$
@p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
$endgroup$
– ben tenyson
Jan 27 at 13:26
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088158%2fevaluate-sum-n-1-infty-frac-psin2n-1-where-psin-is%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The $n$-th derivate of the digamma function is known as "polygamma function of order $n$-th". Moreover, we have the integral representation
$$psi^{(m)}(x) = (-1)^{m+1} int_0^infty frac{t^m}{1-e^{-t}} e^{-xt} , mathrm{d} t.$$
Using the monotone convergence theorem, we get
$$label{1} tag{1}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} sum_{n=1}^infty frac{e^{-nt}}{2n-1} , mathrm{d}t. $$
Since
$$sum_{n=1}^infty e^{-(n-1/2)t} = frac{e^{t/2}}{e^t-1},$$
we get by integration
$$ sum_{n=1}^infty frac{e^{-nt}}{2n-1} = frac{e^{-t/2}}{2} int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s.$$
But we have
$$int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s = 2 int_{e^{t/2}}^infty frac{1}{x^2-1} , mathrm{d} x = 2 mathrm{arcoth}(e^{t/2}) $$
and therefore
$$sum_{n=1}^infty frac{e^{-nt}}{2n-1} = e^{-t/2} mathrm{arcoth}(e^{t/2}).$$
Note that we have proven that $$mathrm{arcoth}(x) = sum_{n=1}^infty frac{x^{-(2n-1)}}{2n-1} quad text{for} quad |x| >1.$$
Thus, we can rewrite eqref{1} by
$$tag{2}label{2}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t.$$
Changing variables we see that
begin{align}
- int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t = - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x.
end{align}
Using $mathrm{artanh}(1/x) = mathrm{coth}(x)$ we can rewrite the integral also by
$$ - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x= 8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y.$$
With the help of ComplexYetTrivial's comment we can compute the last integral explicitly.
Using partial integration in the last line we get that
begin{align}
8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y &= left.-4 mathrm{artanh}(y)^2 ln(y)^2 right|_{y=0}^1 + 8 int_0mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y \
&= 8 int_0^1mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y.
end{align}
Since $$mathrm{artanh}(y) = frac{1}{2} left( ln(y+1)-ln(1-y) right) $$
we get that eqref{2} is equal to
$$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y - 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y + 2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y $$
The remaining integrals are evaluated here, here and here. In fact, we have
$$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y = - zeta(4) = - frac{pi^4}{90} $$
and
$$- 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y = frac{3}{40} pi^4 - 7 log(2) zeta(3) + frac{pi^2 log(2)^2}{3}- frac{log(2)^4}{3} - 8 mathrm{Li}_4(1/2)$$
and also
$$2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y = frac{pi^2}{12} - 8 mathrm{Li}_4(1/2) -7 log(2) zeta(3)+ frac{pi^2 log(2)^2}{3} - frac{ln(2)^4}{3} $$
Finally, we see that eqref{2} can be written as
$$frac{53}{360} pi^4 - 14 log(2) zeta(3) + frac{2}{3} [pi^2 -log(2)^2] log(2)^2 - 16 mathrm{Li}_4(1/2).$$
$endgroup$
$begingroup$
I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
$endgroup$
– ben tenyson
Jan 26 at 14:51
4
$begingroup$
The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
$endgroup$
– ComplexYetTrivial
Jan 26 at 15:04
$begingroup$
The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
$endgroup$
– p4sch
Jan 27 at 12:59
$begingroup$
@p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
$endgroup$
– ben tenyson
Jan 27 at 13:26
add a comment |
$begingroup$
The $n$-th derivate of the digamma function is known as "polygamma function of order $n$-th". Moreover, we have the integral representation
$$psi^{(m)}(x) = (-1)^{m+1} int_0^infty frac{t^m}{1-e^{-t}} e^{-xt} , mathrm{d} t.$$
Using the monotone convergence theorem, we get
$$label{1} tag{1}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} sum_{n=1}^infty frac{e^{-nt}}{2n-1} , mathrm{d}t. $$
Since
$$sum_{n=1}^infty e^{-(n-1/2)t} = frac{e^{t/2}}{e^t-1},$$
we get by integration
$$ sum_{n=1}^infty frac{e^{-nt}}{2n-1} = frac{e^{-t/2}}{2} int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s.$$
But we have
$$int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s = 2 int_{e^{t/2}}^infty frac{1}{x^2-1} , mathrm{d} x = 2 mathrm{arcoth}(e^{t/2}) $$
and therefore
$$sum_{n=1}^infty frac{e^{-nt}}{2n-1} = e^{-t/2} mathrm{arcoth}(e^{t/2}).$$
Note that we have proven that $$mathrm{arcoth}(x) = sum_{n=1}^infty frac{x^{-(2n-1)}}{2n-1} quad text{for} quad |x| >1.$$
Thus, we can rewrite eqref{1} by
$$tag{2}label{2}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t.$$
Changing variables we see that
begin{align}
- int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t = - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x.
end{align}
Using $mathrm{artanh}(1/x) = mathrm{coth}(x)$ we can rewrite the integral also by
$$ - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x= 8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y.$$
With the help of ComplexYetTrivial's comment we can compute the last integral explicitly.
Using partial integration in the last line we get that
begin{align}
8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y &= left.-4 mathrm{artanh}(y)^2 ln(y)^2 right|_{y=0}^1 + 8 int_0mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y \
&= 8 int_0^1mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y.
end{align}
Since $$mathrm{artanh}(y) = frac{1}{2} left( ln(y+1)-ln(1-y) right) $$
we get that eqref{2} is equal to
$$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y - 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y + 2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y $$
The remaining integrals are evaluated here, here and here. In fact, we have
$$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y = - zeta(4) = - frac{pi^4}{90} $$
and
$$- 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y = frac{3}{40} pi^4 - 7 log(2) zeta(3) + frac{pi^2 log(2)^2}{3}- frac{log(2)^4}{3} - 8 mathrm{Li}_4(1/2)$$
and also
$$2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y = frac{pi^2}{12} - 8 mathrm{Li}_4(1/2) -7 log(2) zeta(3)+ frac{pi^2 log(2)^2}{3} - frac{ln(2)^4}{3} $$
Finally, we see that eqref{2} can be written as
$$frac{53}{360} pi^4 - 14 log(2) zeta(3) + frac{2}{3} [pi^2 -log(2)^2] log(2)^2 - 16 mathrm{Li}_4(1/2).$$
$endgroup$
$begingroup$
I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
$endgroup$
– ben tenyson
Jan 26 at 14:51
4
$begingroup$
The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
$endgroup$
– ComplexYetTrivial
Jan 26 at 15:04
$begingroup$
The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
$endgroup$
– p4sch
Jan 27 at 12:59
$begingroup$
@p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
$endgroup$
– ben tenyson
Jan 27 at 13:26
add a comment |
$begingroup$
The $n$-th derivate of the digamma function is known as "polygamma function of order $n$-th". Moreover, we have the integral representation
$$psi^{(m)}(x) = (-1)^{m+1} int_0^infty frac{t^m}{1-e^{-t}} e^{-xt} , mathrm{d} t.$$
Using the monotone convergence theorem, we get
$$label{1} tag{1}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} sum_{n=1}^infty frac{e^{-nt}}{2n-1} , mathrm{d}t. $$
Since
$$sum_{n=1}^infty e^{-(n-1/2)t} = frac{e^{t/2}}{e^t-1},$$
we get by integration
$$ sum_{n=1}^infty frac{e^{-nt}}{2n-1} = frac{e^{-t/2}}{2} int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s.$$
But we have
$$int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s = 2 int_{e^{t/2}}^infty frac{1}{x^2-1} , mathrm{d} x = 2 mathrm{arcoth}(e^{t/2}) $$
and therefore
$$sum_{n=1}^infty frac{e^{-nt}}{2n-1} = e^{-t/2} mathrm{arcoth}(e^{t/2}).$$
Note that we have proven that $$mathrm{arcoth}(x) = sum_{n=1}^infty frac{x^{-(2n-1)}}{2n-1} quad text{for} quad |x| >1.$$
Thus, we can rewrite eqref{1} by
$$tag{2}label{2}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t.$$
Changing variables we see that
begin{align}
- int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t = - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x.
end{align}
Using $mathrm{artanh}(1/x) = mathrm{coth}(x)$ we can rewrite the integral also by
$$ - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x= 8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y.$$
With the help of ComplexYetTrivial's comment we can compute the last integral explicitly.
Using partial integration in the last line we get that
begin{align}
8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y &= left.-4 mathrm{artanh}(y)^2 ln(y)^2 right|_{y=0}^1 + 8 int_0mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y \
&= 8 int_0^1mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y.
end{align}
Since $$mathrm{artanh}(y) = frac{1}{2} left( ln(y+1)-ln(1-y) right) $$
we get that eqref{2} is equal to
$$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y - 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y + 2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y $$
The remaining integrals are evaluated here, here and here. In fact, we have
$$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y = - zeta(4) = - frac{pi^4}{90} $$
and
$$- 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y = frac{3}{40} pi^4 - 7 log(2) zeta(3) + frac{pi^2 log(2)^2}{3}- frac{log(2)^4}{3} - 8 mathrm{Li}_4(1/2)$$
and also
$$2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y = frac{pi^2}{12} - 8 mathrm{Li}_4(1/2) -7 log(2) zeta(3)+ frac{pi^2 log(2)^2}{3} - frac{ln(2)^4}{3} $$
Finally, we see that eqref{2} can be written as
$$frac{53}{360} pi^4 - 14 log(2) zeta(3) + frac{2}{3} [pi^2 -log(2)^2] log(2)^2 - 16 mathrm{Li}_4(1/2).$$
$endgroup$
The $n$-th derivate of the digamma function is known as "polygamma function of order $n$-th". Moreover, we have the integral representation
$$psi^{(m)}(x) = (-1)^{m+1} int_0^infty frac{t^m}{1-e^{-t}} e^{-xt} , mathrm{d} t.$$
Using the monotone convergence theorem, we get
$$label{1} tag{1}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} sum_{n=1}^infty frac{e^{-nt}}{2n-1} , mathrm{d}t. $$
Since
$$sum_{n=1}^infty e^{-(n-1/2)t} = frac{e^{t/2}}{e^t-1},$$
we get by integration
$$ sum_{n=1}^infty frac{e^{-nt}}{2n-1} = frac{e^{-t/2}}{2} int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s.$$
But we have
$$int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s = 2 int_{e^{t/2}}^infty frac{1}{x^2-1} , mathrm{d} x = 2 mathrm{arcoth}(e^{t/2}) $$
and therefore
$$sum_{n=1}^infty frac{e^{-nt}}{2n-1} = e^{-t/2} mathrm{arcoth}(e^{t/2}).$$
Note that we have proven that $$mathrm{arcoth}(x) = sum_{n=1}^infty frac{x^{-(2n-1)}}{2n-1} quad text{for} quad |x| >1.$$
Thus, we can rewrite eqref{1} by
$$tag{2}label{2}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t.$$
Changing variables we see that
begin{align}
- int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t = - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x.
end{align}
Using $mathrm{artanh}(1/x) = mathrm{coth}(x)$ we can rewrite the integral also by
$$ - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x= 8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y.$$
With the help of ComplexYetTrivial's comment we can compute the last integral explicitly.
Using partial integration in the last line we get that
begin{align}
8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y &= left.-4 mathrm{artanh}(y)^2 ln(y)^2 right|_{y=0}^1 + 8 int_0mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y \
&= 8 int_0^1mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y.
end{align}
Since $$mathrm{artanh}(y) = frac{1}{2} left( ln(y+1)-ln(1-y) right) $$
we get that eqref{2} is equal to
$$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y - 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y + 2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y $$
The remaining integrals are evaluated here, here and here. In fact, we have
$$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y = - zeta(4) = - frac{pi^4}{90} $$
and
$$- 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y = frac{3}{40} pi^4 - 7 log(2) zeta(3) + frac{pi^2 log(2)^2}{3}- frac{log(2)^4}{3} - 8 mathrm{Li}_4(1/2)$$
and also
$$2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y = frac{pi^2}{12} - 8 mathrm{Li}_4(1/2) -7 log(2) zeta(3)+ frac{pi^2 log(2)^2}{3} - frac{ln(2)^4}{3} $$
Finally, we see that eqref{2} can be written as
$$frac{53}{360} pi^4 - 14 log(2) zeta(3) + frac{2}{3} [pi^2 -log(2)^2] log(2)^2 - 16 mathrm{Li}_4(1/2).$$
edited Jan 27 at 15:12
answered Jan 26 at 12:29
p4schp4sch
5,460318
5,460318
$begingroup$
I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
$endgroup$
– ben tenyson
Jan 26 at 14:51
4
$begingroup$
The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
$endgroup$
– ComplexYetTrivial
Jan 26 at 15:04
$begingroup$
The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
$endgroup$
– p4sch
Jan 27 at 12:59
$begingroup$
@p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
$endgroup$
– ben tenyson
Jan 27 at 13:26
add a comment |
$begingroup$
I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
$endgroup$
– ben tenyson
Jan 26 at 14:51
4
$begingroup$
The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
$endgroup$
– ComplexYetTrivial
Jan 26 at 15:04
$begingroup$
The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
$endgroup$
– p4sch
Jan 27 at 12:59
$begingroup$
@p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
$endgroup$
– ben tenyson
Jan 27 at 13:26
$begingroup$
I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
$endgroup$
– ben tenyson
Jan 26 at 14:51
$begingroup$
I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
$endgroup$
– ben tenyson
Jan 26 at 14:51
4
4
$begingroup$
The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
$endgroup$
– ComplexYetTrivial
Jan 26 at 15:04
$begingroup$
The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
$endgroup$
– ComplexYetTrivial
Jan 26 at 15:04
$begingroup$
The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
$endgroup$
– p4sch
Jan 27 at 12:59
$begingroup$
The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
$endgroup$
– p4sch
Jan 27 at 12:59
$begingroup$
@p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
$endgroup$
– ben tenyson
Jan 27 at 13:26
$begingroup$
@p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
$endgroup$
– ben tenyson
Jan 27 at 13:26
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088158%2fevaluate-sum-n-1-infty-frac-psin2n-1-where-psin-is%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown