Evaluate $sum_{n=1}^{infty}frac{psi^{''}(n)}{2n-1}$, where $psi^{''}(n)$ is 2nd derivative of digamma...












1












$begingroup$


Does the following sum have a closed form?
$$sum_{n=1}^{infty}frac{psi^{"}(n)}{2n-1},$$ where $psi^{"}(n)$ is 2nd derivative of digamma function.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Does the following sum have a closed form?
    $$sum_{n=1}^{infty}frac{psi^{"}(n)}{2n-1},$$ where $psi^{"}(n)$ is 2nd derivative of digamma function.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Does the following sum have a closed form?
      $$sum_{n=1}^{infty}frac{psi^{"}(n)}{2n-1},$$ where $psi^{"}(n)$ is 2nd derivative of digamma function.










      share|cite|improve this question











      $endgroup$




      Does the following sum have a closed form?
      $$sum_{n=1}^{infty}frac{psi^{"}(n)}{2n-1},$$ where $psi^{"}(n)$ is 2nd derivative of digamma function.







      sequences-and-series summation digamma-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 27 at 13:05









      p4sch

      5,460318




      5,460318










      asked Jan 26 at 11:40









      ben tenysonben tenyson

      414




      414






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          The $n$-th derivate of the digamma function is known as "polygamma function of order $n$-th". Moreover, we have the integral representation
          $$psi^{(m)}(x) = (-1)^{m+1} int_0^infty frac{t^m}{1-e^{-t}} e^{-xt} , mathrm{d} t.$$
          Using the monotone convergence theorem, we get
          $$label{1} tag{1}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} sum_{n=1}^infty frac{e^{-nt}}{2n-1} , mathrm{d}t. $$
          Since
          $$sum_{n=1}^infty e^{-(n-1/2)t} = frac{e^{t/2}}{e^t-1},$$
          we get by integration
          $$ sum_{n=1}^infty frac{e^{-nt}}{2n-1} = frac{e^{-t/2}}{2} int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s.$$
          But we have
          $$int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s = 2 int_{e^{t/2}}^infty frac{1}{x^2-1} , mathrm{d} x = 2 mathrm{arcoth}(e^{t/2}) $$
          and therefore
          $$sum_{n=1}^infty frac{e^{-nt}}{2n-1} = e^{-t/2} mathrm{arcoth}(e^{t/2}).$$
          Note that we have proven that $$mathrm{arcoth}(x) = sum_{n=1}^infty frac{x^{-(2n-1)}}{2n-1} quad text{for} quad |x| >1.$$




          Thus, we can rewrite eqref{1} by
          $$tag{2}label{2}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t.$$




          Changing variables we see that
          begin{align}
          - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t = - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x.
          end{align}

          Using $mathrm{artanh}(1/x) = mathrm{coth}(x)$ we can rewrite the integral also by
          $$ - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x= 8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y.$$




          With the help of ComplexYetTrivial's comment we can compute the last integral explicitly.




          Using partial integration in the last line we get that
          begin{align}
          8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y &= left.-4 mathrm{artanh}(y)^2 ln(y)^2 right|_{y=0}^1 + 8 int_0mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y \
          &= 8 int_0^1mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y.
          end{align}

          Since $$mathrm{artanh}(y) = frac{1}{2} left( ln(y+1)-ln(1-y) right) $$
          we get that eqref{2} is equal to
          $$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y - 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y + 2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y $$
          The remaining integrals are evaluated here, here and here. In fact, we have
          $$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y = - zeta(4) = - frac{pi^4}{90} $$
          and
          $$- 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y = frac{3}{40} pi^4 - 7 log(2) zeta(3) + frac{pi^2 log(2)^2}{3}- frac{log(2)^4}{3} - 8 mathrm{Li}_4(1/2)$$
          and also
          $$2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y = frac{pi^2}{12} - 8 mathrm{Li}_4(1/2) -7 log(2) zeta(3)+ frac{pi^2 log(2)^2}{3} - frac{ln(2)^4}{3} $$




          Finally, we see that eqref{2} can be written as
          $$frac{53}{360} pi^4 - 14 log(2) zeta(3) + frac{2}{3} [pi^2 -log(2)^2] log(2)^2 - 16 mathrm{Li}_4(1/2).$$







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
            $endgroup$
            – ben tenyson
            Jan 26 at 14:51








          • 4




            $begingroup$
            The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
            $endgroup$
            – ComplexYetTrivial
            Jan 26 at 15:04










          • $begingroup$
            The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
            $endgroup$
            – p4sch
            Jan 27 at 12:59












          • $begingroup$
            @p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
            $endgroup$
            – ben tenyson
            Jan 27 at 13:26













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088158%2fevaluate-sum-n-1-infty-frac-psin2n-1-where-psin-is%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          The $n$-th derivate of the digamma function is known as "polygamma function of order $n$-th". Moreover, we have the integral representation
          $$psi^{(m)}(x) = (-1)^{m+1} int_0^infty frac{t^m}{1-e^{-t}} e^{-xt} , mathrm{d} t.$$
          Using the monotone convergence theorem, we get
          $$label{1} tag{1}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} sum_{n=1}^infty frac{e^{-nt}}{2n-1} , mathrm{d}t. $$
          Since
          $$sum_{n=1}^infty e^{-(n-1/2)t} = frac{e^{t/2}}{e^t-1},$$
          we get by integration
          $$ sum_{n=1}^infty frac{e^{-nt}}{2n-1} = frac{e^{-t/2}}{2} int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s.$$
          But we have
          $$int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s = 2 int_{e^{t/2}}^infty frac{1}{x^2-1} , mathrm{d} x = 2 mathrm{arcoth}(e^{t/2}) $$
          and therefore
          $$sum_{n=1}^infty frac{e^{-nt}}{2n-1} = e^{-t/2} mathrm{arcoth}(e^{t/2}).$$
          Note that we have proven that $$mathrm{arcoth}(x) = sum_{n=1}^infty frac{x^{-(2n-1)}}{2n-1} quad text{for} quad |x| >1.$$




          Thus, we can rewrite eqref{1} by
          $$tag{2}label{2}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t.$$




          Changing variables we see that
          begin{align}
          - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t = - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x.
          end{align}

          Using $mathrm{artanh}(1/x) = mathrm{coth}(x)$ we can rewrite the integral also by
          $$ - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x= 8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y.$$




          With the help of ComplexYetTrivial's comment we can compute the last integral explicitly.




          Using partial integration in the last line we get that
          begin{align}
          8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y &= left.-4 mathrm{artanh}(y)^2 ln(y)^2 right|_{y=0}^1 + 8 int_0mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y \
          &= 8 int_0^1mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y.
          end{align}

          Since $$mathrm{artanh}(y) = frac{1}{2} left( ln(y+1)-ln(1-y) right) $$
          we get that eqref{2} is equal to
          $$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y - 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y + 2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y $$
          The remaining integrals are evaluated here, here and here. In fact, we have
          $$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y = - zeta(4) = - frac{pi^4}{90} $$
          and
          $$- 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y = frac{3}{40} pi^4 - 7 log(2) zeta(3) + frac{pi^2 log(2)^2}{3}- frac{log(2)^4}{3} - 8 mathrm{Li}_4(1/2)$$
          and also
          $$2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y = frac{pi^2}{12} - 8 mathrm{Li}_4(1/2) -7 log(2) zeta(3)+ frac{pi^2 log(2)^2}{3} - frac{ln(2)^4}{3} $$




          Finally, we see that eqref{2} can be written as
          $$frac{53}{360} pi^4 - 14 log(2) zeta(3) + frac{2}{3} [pi^2 -log(2)^2] log(2)^2 - 16 mathrm{Li}_4(1/2).$$







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
            $endgroup$
            – ben tenyson
            Jan 26 at 14:51








          • 4




            $begingroup$
            The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
            $endgroup$
            – ComplexYetTrivial
            Jan 26 at 15:04










          • $begingroup$
            The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
            $endgroup$
            – p4sch
            Jan 27 at 12:59












          • $begingroup$
            @p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
            $endgroup$
            – ben tenyson
            Jan 27 at 13:26


















          3












          $begingroup$

          The $n$-th derivate of the digamma function is known as "polygamma function of order $n$-th". Moreover, we have the integral representation
          $$psi^{(m)}(x) = (-1)^{m+1} int_0^infty frac{t^m}{1-e^{-t}} e^{-xt} , mathrm{d} t.$$
          Using the monotone convergence theorem, we get
          $$label{1} tag{1}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} sum_{n=1}^infty frac{e^{-nt}}{2n-1} , mathrm{d}t. $$
          Since
          $$sum_{n=1}^infty e^{-(n-1/2)t} = frac{e^{t/2}}{e^t-1},$$
          we get by integration
          $$ sum_{n=1}^infty frac{e^{-nt}}{2n-1} = frac{e^{-t/2}}{2} int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s.$$
          But we have
          $$int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s = 2 int_{e^{t/2}}^infty frac{1}{x^2-1} , mathrm{d} x = 2 mathrm{arcoth}(e^{t/2}) $$
          and therefore
          $$sum_{n=1}^infty frac{e^{-nt}}{2n-1} = e^{-t/2} mathrm{arcoth}(e^{t/2}).$$
          Note that we have proven that $$mathrm{arcoth}(x) = sum_{n=1}^infty frac{x^{-(2n-1)}}{2n-1} quad text{for} quad |x| >1.$$




          Thus, we can rewrite eqref{1} by
          $$tag{2}label{2}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t.$$




          Changing variables we see that
          begin{align}
          - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t = - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x.
          end{align}

          Using $mathrm{artanh}(1/x) = mathrm{coth}(x)$ we can rewrite the integral also by
          $$ - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x= 8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y.$$




          With the help of ComplexYetTrivial's comment we can compute the last integral explicitly.




          Using partial integration in the last line we get that
          begin{align}
          8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y &= left.-4 mathrm{artanh}(y)^2 ln(y)^2 right|_{y=0}^1 + 8 int_0mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y \
          &= 8 int_0^1mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y.
          end{align}

          Since $$mathrm{artanh}(y) = frac{1}{2} left( ln(y+1)-ln(1-y) right) $$
          we get that eqref{2} is equal to
          $$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y - 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y + 2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y $$
          The remaining integrals are evaluated here, here and here. In fact, we have
          $$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y = - zeta(4) = - frac{pi^4}{90} $$
          and
          $$- 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y = frac{3}{40} pi^4 - 7 log(2) zeta(3) + frac{pi^2 log(2)^2}{3}- frac{log(2)^4}{3} - 8 mathrm{Li}_4(1/2)$$
          and also
          $$2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y = frac{pi^2}{12} - 8 mathrm{Li}_4(1/2) -7 log(2) zeta(3)+ frac{pi^2 log(2)^2}{3} - frac{ln(2)^4}{3} $$




          Finally, we see that eqref{2} can be written as
          $$frac{53}{360} pi^4 - 14 log(2) zeta(3) + frac{2}{3} [pi^2 -log(2)^2] log(2)^2 - 16 mathrm{Li}_4(1/2).$$







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
            $endgroup$
            – ben tenyson
            Jan 26 at 14:51








          • 4




            $begingroup$
            The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
            $endgroup$
            – ComplexYetTrivial
            Jan 26 at 15:04










          • $begingroup$
            The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
            $endgroup$
            – p4sch
            Jan 27 at 12:59












          • $begingroup$
            @p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
            $endgroup$
            – ben tenyson
            Jan 27 at 13:26
















          3












          3








          3





          $begingroup$

          The $n$-th derivate of the digamma function is known as "polygamma function of order $n$-th". Moreover, we have the integral representation
          $$psi^{(m)}(x) = (-1)^{m+1} int_0^infty frac{t^m}{1-e^{-t}} e^{-xt} , mathrm{d} t.$$
          Using the monotone convergence theorem, we get
          $$label{1} tag{1}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} sum_{n=1}^infty frac{e^{-nt}}{2n-1} , mathrm{d}t. $$
          Since
          $$sum_{n=1}^infty e^{-(n-1/2)t} = frac{e^{t/2}}{e^t-1},$$
          we get by integration
          $$ sum_{n=1}^infty frac{e^{-nt}}{2n-1} = frac{e^{-t/2}}{2} int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s.$$
          But we have
          $$int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s = 2 int_{e^{t/2}}^infty frac{1}{x^2-1} , mathrm{d} x = 2 mathrm{arcoth}(e^{t/2}) $$
          and therefore
          $$sum_{n=1}^infty frac{e^{-nt}}{2n-1} = e^{-t/2} mathrm{arcoth}(e^{t/2}).$$
          Note that we have proven that $$mathrm{arcoth}(x) = sum_{n=1}^infty frac{x^{-(2n-1)}}{2n-1} quad text{for} quad |x| >1.$$




          Thus, we can rewrite eqref{1} by
          $$tag{2}label{2}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t.$$




          Changing variables we see that
          begin{align}
          - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t = - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x.
          end{align}

          Using $mathrm{artanh}(1/x) = mathrm{coth}(x)$ we can rewrite the integral also by
          $$ - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x= 8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y.$$




          With the help of ComplexYetTrivial's comment we can compute the last integral explicitly.




          Using partial integration in the last line we get that
          begin{align}
          8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y &= left.-4 mathrm{artanh}(y)^2 ln(y)^2 right|_{y=0}^1 + 8 int_0mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y \
          &= 8 int_0^1mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y.
          end{align}

          Since $$mathrm{artanh}(y) = frac{1}{2} left( ln(y+1)-ln(1-y) right) $$
          we get that eqref{2} is equal to
          $$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y - 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y + 2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y $$
          The remaining integrals are evaluated here, here and here. In fact, we have
          $$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y = - zeta(4) = - frac{pi^4}{90} $$
          and
          $$- 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y = frac{3}{40} pi^4 - 7 log(2) zeta(3) + frac{pi^2 log(2)^2}{3}- frac{log(2)^4}{3} - 8 mathrm{Li}_4(1/2)$$
          and also
          $$2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y = frac{pi^2}{12} - 8 mathrm{Li}_4(1/2) -7 log(2) zeta(3)+ frac{pi^2 log(2)^2}{3} - frac{ln(2)^4}{3} $$




          Finally, we see that eqref{2} can be written as
          $$frac{53}{360} pi^4 - 14 log(2) zeta(3) + frac{2}{3} [pi^2 -log(2)^2] log(2)^2 - 16 mathrm{Li}_4(1/2).$$







          share|cite|improve this answer











          $endgroup$



          The $n$-th derivate of the digamma function is known as "polygamma function of order $n$-th". Moreover, we have the integral representation
          $$psi^{(m)}(x) = (-1)^{m+1} int_0^infty frac{t^m}{1-e^{-t}} e^{-xt} , mathrm{d} t.$$
          Using the monotone convergence theorem, we get
          $$label{1} tag{1}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} sum_{n=1}^infty frac{e^{-nt}}{2n-1} , mathrm{d}t. $$
          Since
          $$sum_{n=1}^infty e^{-(n-1/2)t} = frac{e^{t/2}}{e^t-1},$$
          we get by integration
          $$ sum_{n=1}^infty frac{e^{-nt}}{2n-1} = frac{e^{-t/2}}{2} int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s.$$
          But we have
          $$int_t^infty frac{e^{s/2}}{e^s-1} , mathrm{d} s = 2 int_{e^{t/2}}^infty frac{1}{x^2-1} , mathrm{d} x = 2 mathrm{arcoth}(e^{t/2}) $$
          and therefore
          $$sum_{n=1}^infty frac{e^{-nt}}{2n-1} = e^{-t/2} mathrm{arcoth}(e^{t/2}).$$
          Note that we have proven that $$mathrm{arcoth}(x) = sum_{n=1}^infty frac{x^{-(2n-1)}}{2n-1} quad text{for} quad |x| >1.$$




          Thus, we can rewrite eqref{1} by
          $$tag{2}label{2}sum_{n=1}^infty frac{psi''(n)}{2n-1} = - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t.$$




          Changing variables we see that
          begin{align}
          - int_0^infty frac{t^2}{1-e^{-t}} e^{-t/2} mathrm{arcoth}(e^{t/2}) , mathrm{d} t = - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x.
          end{align}

          Using $mathrm{artanh}(1/x) = mathrm{coth}(x)$ we can rewrite the integral also by
          $$ - 8 int_1^infty frac{ln(x)^2}{x^2-1} mathrm{arcoth}(x) , mathrm{d} x= 8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y.$$




          With the help of ComplexYetTrivial's comment we can compute the last integral explicitly.




          Using partial integration in the last line we get that
          begin{align}
          8 int_0^1 mathrm{artanh}(y) frac{ln(y)^2}{y^2-1} , mathrm{d}y &= left.-4 mathrm{artanh}(y)^2 ln(y)^2 right|_{y=0}^1 + 8 int_0mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y \
          &= 8 int_0^1mathrm{artanh}(y)^2 frac{ln(y)}{y} , mathrm{d} y.
          end{align}

          Since $$mathrm{artanh}(y) = frac{1}{2} left( ln(y+1)-ln(1-y) right) $$
          we get that eqref{2} is equal to
          $$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y - 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y + 2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y $$
          The remaining integrals are evaluated here, here and here. In fact, we have
          $$2 int_0^1 frac{ln(y+1)^2 ln(y)}{y} , mathrm{d} y = - zeta(4) = - frac{pi^4}{90} $$
          and
          $$- 4 int_0^1 frac{ln(y+1) ln(1-y) ln(y)}{y} , mathrm{d} y = frac{3}{40} pi^4 - 7 log(2) zeta(3) + frac{pi^2 log(2)^2}{3}- frac{log(2)^4}{3} - 8 mathrm{Li}_4(1/2)$$
          and also
          $$2 int_0^1 frac{ln(1-y)^2 ln(y)}{y} , mathrm{d} y = frac{pi^2}{12} - 8 mathrm{Li}_4(1/2) -7 log(2) zeta(3)+ frac{pi^2 log(2)^2}{3} - frac{ln(2)^4}{3} $$




          Finally, we see that eqref{2} can be written as
          $$frac{53}{360} pi^4 - 14 log(2) zeta(3) + frac{2}{3} [pi^2 -log(2)^2] log(2)^2 - 16 mathrm{Li}_4(1/2).$$








          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 27 at 15:12

























          answered Jan 26 at 12:29









          p4schp4sch

          5,460318




          5,460318












          • $begingroup$
            I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
            $endgroup$
            – ben tenyson
            Jan 26 at 14:51








          • 4




            $begingroup$
            The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
            $endgroup$
            – ComplexYetTrivial
            Jan 26 at 15:04










          • $begingroup$
            The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
            $endgroup$
            – p4sch
            Jan 27 at 12:59












          • $begingroup$
            @p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
            $endgroup$
            – ben tenyson
            Jan 27 at 13:26




















          • $begingroup$
            I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
            $endgroup$
            – ben tenyson
            Jan 26 at 14:51








          • 4




            $begingroup$
            The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
            $endgroup$
            – ComplexYetTrivial
            Jan 26 at 15:04










          • $begingroup$
            The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
            $endgroup$
            – p4sch
            Jan 27 at 12:59












          • $begingroup$
            @p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
            $endgroup$
            – ben tenyson
            Jan 27 at 13:26


















          $begingroup$
          I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
          $endgroup$
          – ben tenyson
          Jan 26 at 14:51






          $begingroup$
          I have found a link between this sum and this one $displaystyle sum_{n=1}^{infty}frac{psi^{0}(n+1/2)}{n^{3}}$ but I can't solve this one either could you give this one a try?
          $endgroup$
          – ben tenyson
          Jan 26 at 14:51






          4




          4




          $begingroup$
          The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
          $endgroup$
          – ComplexYetTrivial
          Jan 26 at 15:04




          $begingroup$
          The last integral can be computed using integration by parts and the definition of $operatorname{artanh}$ . The remaining integrals are evaluated here, here and here. The final result should be $$frac{53}{360} pi^4 + frac{2}{3}[pi^2 -ln(2)^2]ln(2)^2 - 14ln(2)zeta(3) -16 operatorname{Li}_4(1/2) , .$$
          $endgroup$
          – ComplexYetTrivial
          Jan 26 at 15:04












          $begingroup$
          The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
          $endgroup$
          – p4sch
          Jan 27 at 12:59






          $begingroup$
          The final result is correct. Also the numerical values for both the integral and the initial sum are identical with your result. :-) I have added your solution to my answer. (I have already tried a similar idea: Partial integration for $mathrm{arccoth}(x)$ and corresponding identity $mathrm{arccoth}(x) = ln((1+x)/(x-1))/2$, but the integral cannot be splitted, because three parts are divergent integrals, as we integrate from $x=1$ to $infty$.)
          $endgroup$
          – p4sch
          Jan 27 at 12:59














          $begingroup$
          @p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
          $endgroup$
          – ben tenyson
          Jan 27 at 13:26






          $begingroup$
          @p4sch I encounted this sum while doing this double sum $sum_{n=1}^{infty}frac{1}{n^{3}}sum_{k=1}^{n}frac{1}{2k-1}$ .Changing the order of summation I get the sum in question but done without changing the order i get this $frac{1}{2}(frac{psi(n+1/2)}{n^{3}}-psi(frac{1}{2})zeta(3))$.Since this has been evaluated by ComplexyetTrivial sum of $frac{psi(n+1/2)}{n^{3}}$ can also be obtained.Special thanks to both of you.
          $endgroup$
          – ben tenyson
          Jan 27 at 13:26




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088158%2fevaluate-sum-n-1-infty-frac-psin2n-1-where-psin-is%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith