Existence of analytic function having different values on $|z|=1$ and $|z|=2$
$begingroup$
Does there exist an entire function satisying $f(z)=z$ for $|z|=1$ and $f(z)=z^2$ for $|z|=2$?
I think no, but what argument would do here? Would it be maximum modulus or Liouville theorem? A counterexample should involve power series, I think? Any hints? Thanks beforehand.
complex-analysis entire-functions
$endgroup$
add a comment |
$begingroup$
Does there exist an entire function satisying $f(z)=z$ for $|z|=1$ and $f(z)=z^2$ for $|z|=2$?
I think no, but what argument would do here? Would it be maximum modulus or Liouville theorem? A counterexample should involve power series, I think? Any hints? Thanks beforehand.
complex-analysis entire-functions
$endgroup$
add a comment |
$begingroup$
Does there exist an entire function satisying $f(z)=z$ for $|z|=1$ and $f(z)=z^2$ for $|z|=2$?
I think no, but what argument would do here? Would it be maximum modulus or Liouville theorem? A counterexample should involve power series, I think? Any hints? Thanks beforehand.
complex-analysis entire-functions
$endgroup$
Does there exist an entire function satisying $f(z)=z$ for $|z|=1$ and $f(z)=z^2$ for $|z|=2$?
I think no, but what argument would do here? Would it be maximum modulus or Liouville theorem? A counterexample should involve power series, I think? Any hints? Thanks beforehand.
complex-analysis entire-functions
complex-analysis entire-functions
asked Jan 25 at 9:02
vidyarthividyarthi
3,0361833
3,0361833
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If $f(z)=z$ for $|z|=1$ then $f(z)-z$ is an entire function whose zeros have a limit point. This implies $f(z)=z$ for all $z$. So no such function can exist.
$endgroup$
$begingroup$
oh! what an easy argument. Just missed it though
$endgroup$
– vidyarthi
Jan 25 at 9:05
add a comment |
$begingroup$
We have
$$f'(0)= frac{1}{2 pi i}int_{|z|=1} frac{f(w)}{w^2} dw =frac{1}{2 pi i}int_{|z|=1} frac{w}{w^2} dw =frac{1}{2 pi i}int_{|z|=1} frac{1}{w} dw=1$$
and
$$f'(0)= frac{1}{2 pi i}int_{|z|=2} frac{f(w)}{w^2} dw =frac{1}{2 pi i}int_{|z|=2} frac{w^2}{w^2} dw =frac{1}{2 pi i}int_{|z|=2} 1 dw=0.$$
This contradiction shows that no such function exists.
$endgroup$
$begingroup$
that's the power of complex integration
$endgroup$
– vidyarthi
Jan 25 at 11:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086894%2fexistence-of-analytic-function-having-different-values-on-z-1-and-z-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $f(z)=z$ for $|z|=1$ then $f(z)-z$ is an entire function whose zeros have a limit point. This implies $f(z)=z$ for all $z$. So no such function can exist.
$endgroup$
$begingroup$
oh! what an easy argument. Just missed it though
$endgroup$
– vidyarthi
Jan 25 at 9:05
add a comment |
$begingroup$
If $f(z)=z$ for $|z|=1$ then $f(z)-z$ is an entire function whose zeros have a limit point. This implies $f(z)=z$ for all $z$. So no such function can exist.
$endgroup$
$begingroup$
oh! what an easy argument. Just missed it though
$endgroup$
– vidyarthi
Jan 25 at 9:05
add a comment |
$begingroup$
If $f(z)=z$ for $|z|=1$ then $f(z)-z$ is an entire function whose zeros have a limit point. This implies $f(z)=z$ for all $z$. So no such function can exist.
$endgroup$
If $f(z)=z$ for $|z|=1$ then $f(z)-z$ is an entire function whose zeros have a limit point. This implies $f(z)=z$ for all $z$. So no such function can exist.
answered Jan 25 at 9:04


Kavi Rama MurthyKavi Rama Murthy
68.3k53069
68.3k53069
$begingroup$
oh! what an easy argument. Just missed it though
$endgroup$
– vidyarthi
Jan 25 at 9:05
add a comment |
$begingroup$
oh! what an easy argument. Just missed it though
$endgroup$
– vidyarthi
Jan 25 at 9:05
$begingroup$
oh! what an easy argument. Just missed it though
$endgroup$
– vidyarthi
Jan 25 at 9:05
$begingroup$
oh! what an easy argument. Just missed it though
$endgroup$
– vidyarthi
Jan 25 at 9:05
add a comment |
$begingroup$
We have
$$f'(0)= frac{1}{2 pi i}int_{|z|=1} frac{f(w)}{w^2} dw =frac{1}{2 pi i}int_{|z|=1} frac{w}{w^2} dw =frac{1}{2 pi i}int_{|z|=1} frac{1}{w} dw=1$$
and
$$f'(0)= frac{1}{2 pi i}int_{|z|=2} frac{f(w)}{w^2} dw =frac{1}{2 pi i}int_{|z|=2} frac{w^2}{w^2} dw =frac{1}{2 pi i}int_{|z|=2} 1 dw=0.$$
This contradiction shows that no such function exists.
$endgroup$
$begingroup$
that's the power of complex integration
$endgroup$
– vidyarthi
Jan 25 at 11:10
add a comment |
$begingroup$
We have
$$f'(0)= frac{1}{2 pi i}int_{|z|=1} frac{f(w)}{w^2} dw =frac{1}{2 pi i}int_{|z|=1} frac{w}{w^2} dw =frac{1}{2 pi i}int_{|z|=1} frac{1}{w} dw=1$$
and
$$f'(0)= frac{1}{2 pi i}int_{|z|=2} frac{f(w)}{w^2} dw =frac{1}{2 pi i}int_{|z|=2} frac{w^2}{w^2} dw =frac{1}{2 pi i}int_{|z|=2} 1 dw=0.$$
This contradiction shows that no such function exists.
$endgroup$
$begingroup$
that's the power of complex integration
$endgroup$
– vidyarthi
Jan 25 at 11:10
add a comment |
$begingroup$
We have
$$f'(0)= frac{1}{2 pi i}int_{|z|=1} frac{f(w)}{w^2} dw =frac{1}{2 pi i}int_{|z|=1} frac{w}{w^2} dw =frac{1}{2 pi i}int_{|z|=1} frac{1}{w} dw=1$$
and
$$f'(0)= frac{1}{2 pi i}int_{|z|=2} frac{f(w)}{w^2} dw =frac{1}{2 pi i}int_{|z|=2} frac{w^2}{w^2} dw =frac{1}{2 pi i}int_{|z|=2} 1 dw=0.$$
This contradiction shows that no such function exists.
$endgroup$
We have
$$f'(0)= frac{1}{2 pi i}int_{|z|=1} frac{f(w)}{w^2} dw =frac{1}{2 pi i}int_{|z|=1} frac{w}{w^2} dw =frac{1}{2 pi i}int_{|z|=1} frac{1}{w} dw=1$$
and
$$f'(0)= frac{1}{2 pi i}int_{|z|=2} frac{f(w)}{w^2} dw =frac{1}{2 pi i}int_{|z|=2} frac{w^2}{w^2} dw =frac{1}{2 pi i}int_{|z|=2} 1 dw=0.$$
This contradiction shows that no such function exists.
answered Jan 25 at 11:01


FredFred
48.5k11849
48.5k11849
$begingroup$
that's the power of complex integration
$endgroup$
– vidyarthi
Jan 25 at 11:10
add a comment |
$begingroup$
that's the power of complex integration
$endgroup$
– vidyarthi
Jan 25 at 11:10
$begingroup$
that's the power of complex integration
$endgroup$
– vidyarthi
Jan 25 at 11:10
$begingroup$
that's the power of complex integration
$endgroup$
– vidyarthi
Jan 25 at 11:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086894%2fexistence-of-analytic-function-having-different-values-on-z-1-and-z-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown