Expectation of an infinite sum of indicator functions
$begingroup$
Let $(X_n)$ be i.i.d. with $E|X_n| = infty$, $E$ being expected value. I'm trying to understand a proof that ${lim sup}_{n to infty} |X_n|/n = infty$.
In the proof the following inequality is used: for all $a in mathbb R$,
$$Eleft[sum_{n=1}^infty mathbb 1_{frac{|X_1|}{n} > a}right] geq Eleft[frac{|X_1|}{a} - 1right]$$
How should I understand this inequality? Where does it come from?
probability probability-theory expected-value
$endgroup$
add a comment |
$begingroup$
Let $(X_n)$ be i.i.d. with $E|X_n| = infty$, $E$ being expected value. I'm trying to understand a proof that ${lim sup}_{n to infty} |X_n|/n = infty$.
In the proof the following inequality is used: for all $a in mathbb R$,
$$Eleft[sum_{n=1}^infty mathbb 1_{frac{|X_1|}{n} > a}right] geq Eleft[frac{|X_1|}{a} - 1right]$$
How should I understand this inequality? Where does it come from?
probability probability-theory expected-value
$endgroup$
add a comment |
$begingroup$
Let $(X_n)$ be i.i.d. with $E|X_n| = infty$, $E$ being expected value. I'm trying to understand a proof that ${lim sup}_{n to infty} |X_n|/n = infty$.
In the proof the following inequality is used: for all $a in mathbb R$,
$$Eleft[sum_{n=1}^infty mathbb 1_{frac{|X_1|}{n} > a}right] geq Eleft[frac{|X_1|}{a} - 1right]$$
How should I understand this inequality? Where does it come from?
probability probability-theory expected-value
$endgroup$
Let $(X_n)$ be i.i.d. with $E|X_n| = infty$, $E$ being expected value. I'm trying to understand a proof that ${lim sup}_{n to infty} |X_n|/n = infty$.
In the proof the following inequality is used: for all $a in mathbb R$,
$$Eleft[sum_{n=1}^infty mathbb 1_{frac{|X_1|}{n} > a}right] geq Eleft[frac{|X_1|}{a} - 1right]$$
How should I understand this inequality? Where does it come from?
probability probability-theory expected-value
probability probability-theory expected-value
asked Jan 26 at 15:23
D GD G
1628
1628
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We observe that
$$begin{eqnarray}
sum_{n=1}^infty 1_{{|X_1|/n>a}}&=&sum_{n=1}^infty 1_{{n<|X_1|/a}}\
&=&leftlceilfrac{|X_1|}{a}rightrceil-1\&ge& frac{|X_1|}{a}-1,
end{eqnarray}$$ where $lceil xrceil$ denotes the least integer $geqslant x$. Therefore it follows
$$
Bbb Eleft[sum_{n=1}^infty 1_{{|X_1|/n>a}}right]ge Bbb Eleft[frac{|X_1|}{a}-1right].
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088363%2fexpectation-of-an-infinite-sum-of-indicator-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We observe that
$$begin{eqnarray}
sum_{n=1}^infty 1_{{|X_1|/n>a}}&=&sum_{n=1}^infty 1_{{n<|X_1|/a}}\
&=&leftlceilfrac{|X_1|}{a}rightrceil-1\&ge& frac{|X_1|}{a}-1,
end{eqnarray}$$ where $lceil xrceil$ denotes the least integer $geqslant x$. Therefore it follows
$$
Bbb Eleft[sum_{n=1}^infty 1_{{|X_1|/n>a}}right]ge Bbb Eleft[frac{|X_1|}{a}-1right].
$$
$endgroup$
add a comment |
$begingroup$
We observe that
$$begin{eqnarray}
sum_{n=1}^infty 1_{{|X_1|/n>a}}&=&sum_{n=1}^infty 1_{{n<|X_1|/a}}\
&=&leftlceilfrac{|X_1|}{a}rightrceil-1\&ge& frac{|X_1|}{a}-1,
end{eqnarray}$$ where $lceil xrceil$ denotes the least integer $geqslant x$. Therefore it follows
$$
Bbb Eleft[sum_{n=1}^infty 1_{{|X_1|/n>a}}right]ge Bbb Eleft[frac{|X_1|}{a}-1right].
$$
$endgroup$
add a comment |
$begingroup$
We observe that
$$begin{eqnarray}
sum_{n=1}^infty 1_{{|X_1|/n>a}}&=&sum_{n=1}^infty 1_{{n<|X_1|/a}}\
&=&leftlceilfrac{|X_1|}{a}rightrceil-1\&ge& frac{|X_1|}{a}-1,
end{eqnarray}$$ where $lceil xrceil$ denotes the least integer $geqslant x$. Therefore it follows
$$
Bbb Eleft[sum_{n=1}^infty 1_{{|X_1|/n>a}}right]ge Bbb Eleft[frac{|X_1|}{a}-1right].
$$
$endgroup$
We observe that
$$begin{eqnarray}
sum_{n=1}^infty 1_{{|X_1|/n>a}}&=&sum_{n=1}^infty 1_{{n<|X_1|/a}}\
&=&leftlceilfrac{|X_1|}{a}rightrceil-1\&ge& frac{|X_1|}{a}-1,
end{eqnarray}$$ where $lceil xrceil$ denotes the least integer $geqslant x$. Therefore it follows
$$
Bbb Eleft[sum_{n=1}^infty 1_{{|X_1|/n>a}}right]ge Bbb Eleft[frac{|X_1|}{a}-1right].
$$
answered Jan 26 at 15:34


SongSong
18.5k21550
18.5k21550
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088363%2fexpectation-of-an-infinite-sum-of-indicator-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown