Extend this integral to higher dimension












0












$begingroup$


I'm solving a high dimensional integral where $x in mathbb{R}^D$; where $A in mathbb{R}^{DxD}$ positive definite and $b in mathbb{R}^D$; $c in mathbb{R}$



$$int^{infty}_{-infty} boldsymbol{x}^2exp(- frac{1}{2}boldsymbol{x}^TAboldsymbol{x} + b^Tboldsymbol{x} + c)dboldsymbol{x}$$.



So basically, the variance of some unnormalized probability distribution. I first start with the one dimensional case:



begin{align}
&int x^2exp(-ax^2+bx+c)\
&=exp(c) int x^2 exp(-ax^2 + bx)\
&=exp(c) int x^2 exp(-a(x - frac{b}{2a})^2 + frac{b^2}{4a})\
&= exp(c)exp(frac{b^2}{4a})int x^2 exp(-a(x-frac{b}{2a})^2)dx\
end{align}



By change of variable



let $u = x-frac{b}{2a} implies du = dx$ and $x = u + frac{b}{2a}$



$x^2 = u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}$



we have



begin{align}
&=exp(c)exp(frac{b^2}{4a})int (u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}) exp(-a(u)^2)du\
&= exp(c + frac{b^2}{4a}) big(int u^2 exp(-a(u)^2)du + int 2ufrac{b}{2a}exp(-a(u)^2)du + int frac{b^2}{4a^2} exp(-a(u)^2)du big)
end{align}



for each three terms in the big bracket;



$$int^{infty}_{infty} u^2 exp(-a(u)^2)du = dfrac{sqrt{{pi}}}{2a^frac{3}{2}}$$



$$int^{infty}_{infty} 2ufrac{b}{2a} exp(-a(u)^2)du = 0 $$



$$int^{infty}_{infty} frac{b^2}{4a^2} exp(-a(u)^2)du = dfrac{sqrt{{pi}}b^2}{4a^frac{5}{2}}$$



Finally; leads me to the final solution of



$$ exp(c + frac{b^2}{4a}) sqrt{{pi}} (dfrac{1}{2a^frac{3}{2}} + dfrac{b^2}{4a^frac{5}{2}} )$$



However, I'm having trouble to generalize it to high dimension. The answer should a vector in $mathbb{R}^{DxD}$



My intuition based on Normal distribution in high dimension tells my the answer should be look like



$$exp(c + frac{b^Tb}{4det(A)})pi^{frac{D}{2}} Big( dots Big)$$



But I couldn't make the bracket term in one dimension to higher dimension while still keeps the final solution a vector with dimension $DxD$ (it looks like it will be ends up with a scalar). Any helps Thanks










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I'm solving a high dimensional integral where $x in mathbb{R}^D$; where $A in mathbb{R}^{DxD}$ positive definite and $b in mathbb{R}^D$; $c in mathbb{R}$



    $$int^{infty}_{-infty} boldsymbol{x}^2exp(- frac{1}{2}boldsymbol{x}^TAboldsymbol{x} + b^Tboldsymbol{x} + c)dboldsymbol{x}$$.



    So basically, the variance of some unnormalized probability distribution. I first start with the one dimensional case:



    begin{align}
    &int x^2exp(-ax^2+bx+c)\
    &=exp(c) int x^2 exp(-ax^2 + bx)\
    &=exp(c) int x^2 exp(-a(x - frac{b}{2a})^2 + frac{b^2}{4a})\
    &= exp(c)exp(frac{b^2}{4a})int x^2 exp(-a(x-frac{b}{2a})^2)dx\
    end{align}



    By change of variable



    let $u = x-frac{b}{2a} implies du = dx$ and $x = u + frac{b}{2a}$



    $x^2 = u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}$



    we have



    begin{align}
    &=exp(c)exp(frac{b^2}{4a})int (u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}) exp(-a(u)^2)du\
    &= exp(c + frac{b^2}{4a}) big(int u^2 exp(-a(u)^2)du + int 2ufrac{b}{2a}exp(-a(u)^2)du + int frac{b^2}{4a^2} exp(-a(u)^2)du big)
    end{align}



    for each three terms in the big bracket;



    $$int^{infty}_{infty} u^2 exp(-a(u)^2)du = dfrac{sqrt{{pi}}}{2a^frac{3}{2}}$$



    $$int^{infty}_{infty} 2ufrac{b}{2a} exp(-a(u)^2)du = 0 $$



    $$int^{infty}_{infty} frac{b^2}{4a^2} exp(-a(u)^2)du = dfrac{sqrt{{pi}}b^2}{4a^frac{5}{2}}$$



    Finally; leads me to the final solution of



    $$ exp(c + frac{b^2}{4a}) sqrt{{pi}} (dfrac{1}{2a^frac{3}{2}} + dfrac{b^2}{4a^frac{5}{2}} )$$



    However, I'm having trouble to generalize it to high dimension. The answer should a vector in $mathbb{R}^{DxD}$



    My intuition based on Normal distribution in high dimension tells my the answer should be look like



    $$exp(c + frac{b^Tb}{4det(A)})pi^{frac{D}{2}} Big( dots Big)$$



    But I couldn't make the bracket term in one dimension to higher dimension while still keeps the final solution a vector with dimension $DxD$ (it looks like it will be ends up with a scalar). Any helps Thanks










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I'm solving a high dimensional integral where $x in mathbb{R}^D$; where $A in mathbb{R}^{DxD}$ positive definite and $b in mathbb{R}^D$; $c in mathbb{R}$



      $$int^{infty}_{-infty} boldsymbol{x}^2exp(- frac{1}{2}boldsymbol{x}^TAboldsymbol{x} + b^Tboldsymbol{x} + c)dboldsymbol{x}$$.



      So basically, the variance of some unnormalized probability distribution. I first start with the one dimensional case:



      begin{align}
      &int x^2exp(-ax^2+bx+c)\
      &=exp(c) int x^2 exp(-ax^2 + bx)\
      &=exp(c) int x^2 exp(-a(x - frac{b}{2a})^2 + frac{b^2}{4a})\
      &= exp(c)exp(frac{b^2}{4a})int x^2 exp(-a(x-frac{b}{2a})^2)dx\
      end{align}



      By change of variable



      let $u = x-frac{b}{2a} implies du = dx$ and $x = u + frac{b}{2a}$



      $x^2 = u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}$



      we have



      begin{align}
      &=exp(c)exp(frac{b^2}{4a})int (u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}) exp(-a(u)^2)du\
      &= exp(c + frac{b^2}{4a}) big(int u^2 exp(-a(u)^2)du + int 2ufrac{b}{2a}exp(-a(u)^2)du + int frac{b^2}{4a^2} exp(-a(u)^2)du big)
      end{align}



      for each three terms in the big bracket;



      $$int^{infty}_{infty} u^2 exp(-a(u)^2)du = dfrac{sqrt{{pi}}}{2a^frac{3}{2}}$$



      $$int^{infty}_{infty} 2ufrac{b}{2a} exp(-a(u)^2)du = 0 $$



      $$int^{infty}_{infty} frac{b^2}{4a^2} exp(-a(u)^2)du = dfrac{sqrt{{pi}}b^2}{4a^frac{5}{2}}$$



      Finally; leads me to the final solution of



      $$ exp(c + frac{b^2}{4a}) sqrt{{pi}} (dfrac{1}{2a^frac{3}{2}} + dfrac{b^2}{4a^frac{5}{2}} )$$



      However, I'm having trouble to generalize it to high dimension. The answer should a vector in $mathbb{R}^{DxD}$



      My intuition based on Normal distribution in high dimension tells my the answer should be look like



      $$exp(c + frac{b^Tb}{4det(A)})pi^{frac{D}{2}} Big( dots Big)$$



      But I couldn't make the bracket term in one dimension to higher dimension while still keeps the final solution a vector with dimension $DxD$ (it looks like it will be ends up with a scalar). Any helps Thanks










      share|cite|improve this question











      $endgroup$




      I'm solving a high dimensional integral where $x in mathbb{R}^D$; where $A in mathbb{R}^{DxD}$ positive definite and $b in mathbb{R}^D$; $c in mathbb{R}$



      $$int^{infty}_{-infty} boldsymbol{x}^2exp(- frac{1}{2}boldsymbol{x}^TAboldsymbol{x} + b^Tboldsymbol{x} + c)dboldsymbol{x}$$.



      So basically, the variance of some unnormalized probability distribution. I first start with the one dimensional case:



      begin{align}
      &int x^2exp(-ax^2+bx+c)\
      &=exp(c) int x^2 exp(-ax^2 + bx)\
      &=exp(c) int x^2 exp(-a(x - frac{b}{2a})^2 + frac{b^2}{4a})\
      &= exp(c)exp(frac{b^2}{4a})int x^2 exp(-a(x-frac{b}{2a})^2)dx\
      end{align}



      By change of variable



      let $u = x-frac{b}{2a} implies du = dx$ and $x = u + frac{b}{2a}$



      $x^2 = u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}$



      we have



      begin{align}
      &=exp(c)exp(frac{b^2}{4a})int (u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}) exp(-a(u)^2)du\
      &= exp(c + frac{b^2}{4a}) big(int u^2 exp(-a(u)^2)du + int 2ufrac{b}{2a}exp(-a(u)^2)du + int frac{b^2}{4a^2} exp(-a(u)^2)du big)
      end{align}



      for each three terms in the big bracket;



      $$int^{infty}_{infty} u^2 exp(-a(u)^2)du = dfrac{sqrt{{pi}}}{2a^frac{3}{2}}$$



      $$int^{infty}_{infty} 2ufrac{b}{2a} exp(-a(u)^2)du = 0 $$



      $$int^{infty}_{infty} frac{b^2}{4a^2} exp(-a(u)^2)du = dfrac{sqrt{{pi}}b^2}{4a^frac{5}{2}}$$



      Finally; leads me to the final solution of



      $$ exp(c + frac{b^2}{4a}) sqrt{{pi}} (dfrac{1}{2a^frac{3}{2}} + dfrac{b^2}{4a^frac{5}{2}} )$$



      However, I'm having trouble to generalize it to high dimension. The answer should a vector in $mathbb{R}^{DxD}$



      My intuition based on Normal distribution in high dimension tells my the answer should be look like



      $$exp(c + frac{b^Tb}{4det(A)})pi^{frac{D}{2}} Big( dots Big)$$



      But I couldn't make the bracket term in one dimension to higher dimension while still keeps the final solution a vector with dimension $DxD$ (it looks like it will be ends up with a scalar). Any helps Thanks







      probability integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 29 at 1:57







      ElleryL

















      asked Jan 28 at 1:40









      ElleryLElleryL

      725519




      725519






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090344%2fextend-this-integral-to-higher-dimension%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090344%2fextend-this-integral-to-higher-dimension%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith