Extend this integral to higher dimension
$begingroup$
I'm solving a high dimensional integral where $x in mathbb{R}^D$; where $A in mathbb{R}^{DxD}$ positive definite and $b in mathbb{R}^D$; $c in mathbb{R}$
$$int^{infty}_{-infty} boldsymbol{x}^2exp(- frac{1}{2}boldsymbol{x}^TAboldsymbol{x} + b^Tboldsymbol{x} + c)dboldsymbol{x}$$.
So basically, the variance of some unnormalized probability distribution. I first start with the one dimensional case:
begin{align}
&int x^2exp(-ax^2+bx+c)\
&=exp(c) int x^2 exp(-ax^2 + bx)\
&=exp(c) int x^2 exp(-a(x - frac{b}{2a})^2 + frac{b^2}{4a})\
&= exp(c)exp(frac{b^2}{4a})int x^2 exp(-a(x-frac{b}{2a})^2)dx\
end{align}
By change of variable
let $u = x-frac{b}{2a} implies du = dx$ and $x = u + frac{b}{2a}$
$x^2 = u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}$
we have
begin{align}
&=exp(c)exp(frac{b^2}{4a})int (u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}) exp(-a(u)^2)du\
&= exp(c + frac{b^2}{4a}) big(int u^2 exp(-a(u)^2)du + int 2ufrac{b}{2a}exp(-a(u)^2)du + int frac{b^2}{4a^2} exp(-a(u)^2)du big)
end{align}
for each three terms in the big bracket;
$$int^{infty}_{infty} u^2 exp(-a(u)^2)du = dfrac{sqrt{{pi}}}{2a^frac{3}{2}}$$
$$int^{infty}_{infty} 2ufrac{b}{2a} exp(-a(u)^2)du = 0 $$
$$int^{infty}_{infty} frac{b^2}{4a^2} exp(-a(u)^2)du = dfrac{sqrt{{pi}}b^2}{4a^frac{5}{2}}$$
Finally; leads me to the final solution of
$$ exp(c + frac{b^2}{4a}) sqrt{{pi}} (dfrac{1}{2a^frac{3}{2}} + dfrac{b^2}{4a^frac{5}{2}} )$$
However, I'm having trouble to generalize it to high dimension. The answer should a vector in $mathbb{R}^{DxD}$
My intuition based on Normal distribution in high dimension tells my the answer should be look like
$$exp(c + frac{b^Tb}{4det(A)})pi^{frac{D}{2}} Big( dots Big)$$
But I couldn't make the bracket term in one dimension to higher dimension while still keeps the final solution a vector with dimension $DxD$ (it looks like it will be ends up with a scalar). Any helps Thanks
probability integration
$endgroup$
add a comment |
$begingroup$
I'm solving a high dimensional integral where $x in mathbb{R}^D$; where $A in mathbb{R}^{DxD}$ positive definite and $b in mathbb{R}^D$; $c in mathbb{R}$
$$int^{infty}_{-infty} boldsymbol{x}^2exp(- frac{1}{2}boldsymbol{x}^TAboldsymbol{x} + b^Tboldsymbol{x} + c)dboldsymbol{x}$$.
So basically, the variance of some unnormalized probability distribution. I first start with the one dimensional case:
begin{align}
&int x^2exp(-ax^2+bx+c)\
&=exp(c) int x^2 exp(-ax^2 + bx)\
&=exp(c) int x^2 exp(-a(x - frac{b}{2a})^2 + frac{b^2}{4a})\
&= exp(c)exp(frac{b^2}{4a})int x^2 exp(-a(x-frac{b}{2a})^2)dx\
end{align}
By change of variable
let $u = x-frac{b}{2a} implies du = dx$ and $x = u + frac{b}{2a}$
$x^2 = u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}$
we have
begin{align}
&=exp(c)exp(frac{b^2}{4a})int (u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}) exp(-a(u)^2)du\
&= exp(c + frac{b^2}{4a}) big(int u^2 exp(-a(u)^2)du + int 2ufrac{b}{2a}exp(-a(u)^2)du + int frac{b^2}{4a^2} exp(-a(u)^2)du big)
end{align}
for each three terms in the big bracket;
$$int^{infty}_{infty} u^2 exp(-a(u)^2)du = dfrac{sqrt{{pi}}}{2a^frac{3}{2}}$$
$$int^{infty}_{infty} 2ufrac{b}{2a} exp(-a(u)^2)du = 0 $$
$$int^{infty}_{infty} frac{b^2}{4a^2} exp(-a(u)^2)du = dfrac{sqrt{{pi}}b^2}{4a^frac{5}{2}}$$
Finally; leads me to the final solution of
$$ exp(c + frac{b^2}{4a}) sqrt{{pi}} (dfrac{1}{2a^frac{3}{2}} + dfrac{b^2}{4a^frac{5}{2}} )$$
However, I'm having trouble to generalize it to high dimension. The answer should a vector in $mathbb{R}^{DxD}$
My intuition based on Normal distribution in high dimension tells my the answer should be look like
$$exp(c + frac{b^Tb}{4det(A)})pi^{frac{D}{2}} Big( dots Big)$$
But I couldn't make the bracket term in one dimension to higher dimension while still keeps the final solution a vector with dimension $DxD$ (it looks like it will be ends up with a scalar). Any helps Thanks
probability integration
$endgroup$
add a comment |
$begingroup$
I'm solving a high dimensional integral where $x in mathbb{R}^D$; where $A in mathbb{R}^{DxD}$ positive definite and $b in mathbb{R}^D$; $c in mathbb{R}$
$$int^{infty}_{-infty} boldsymbol{x}^2exp(- frac{1}{2}boldsymbol{x}^TAboldsymbol{x} + b^Tboldsymbol{x} + c)dboldsymbol{x}$$.
So basically, the variance of some unnormalized probability distribution. I first start with the one dimensional case:
begin{align}
&int x^2exp(-ax^2+bx+c)\
&=exp(c) int x^2 exp(-ax^2 + bx)\
&=exp(c) int x^2 exp(-a(x - frac{b}{2a})^2 + frac{b^2}{4a})\
&= exp(c)exp(frac{b^2}{4a})int x^2 exp(-a(x-frac{b}{2a})^2)dx\
end{align}
By change of variable
let $u = x-frac{b}{2a} implies du = dx$ and $x = u + frac{b}{2a}$
$x^2 = u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}$
we have
begin{align}
&=exp(c)exp(frac{b^2}{4a})int (u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}) exp(-a(u)^2)du\
&= exp(c + frac{b^2}{4a}) big(int u^2 exp(-a(u)^2)du + int 2ufrac{b}{2a}exp(-a(u)^2)du + int frac{b^2}{4a^2} exp(-a(u)^2)du big)
end{align}
for each three terms in the big bracket;
$$int^{infty}_{infty} u^2 exp(-a(u)^2)du = dfrac{sqrt{{pi}}}{2a^frac{3}{2}}$$
$$int^{infty}_{infty} 2ufrac{b}{2a} exp(-a(u)^2)du = 0 $$
$$int^{infty}_{infty} frac{b^2}{4a^2} exp(-a(u)^2)du = dfrac{sqrt{{pi}}b^2}{4a^frac{5}{2}}$$
Finally; leads me to the final solution of
$$ exp(c + frac{b^2}{4a}) sqrt{{pi}} (dfrac{1}{2a^frac{3}{2}} + dfrac{b^2}{4a^frac{5}{2}} )$$
However, I'm having trouble to generalize it to high dimension. The answer should a vector in $mathbb{R}^{DxD}$
My intuition based on Normal distribution in high dimension tells my the answer should be look like
$$exp(c + frac{b^Tb}{4det(A)})pi^{frac{D}{2}} Big( dots Big)$$
But I couldn't make the bracket term in one dimension to higher dimension while still keeps the final solution a vector with dimension $DxD$ (it looks like it will be ends up with a scalar). Any helps Thanks
probability integration
$endgroup$
I'm solving a high dimensional integral where $x in mathbb{R}^D$; where $A in mathbb{R}^{DxD}$ positive definite and $b in mathbb{R}^D$; $c in mathbb{R}$
$$int^{infty}_{-infty} boldsymbol{x}^2exp(- frac{1}{2}boldsymbol{x}^TAboldsymbol{x} + b^Tboldsymbol{x} + c)dboldsymbol{x}$$.
So basically, the variance of some unnormalized probability distribution. I first start with the one dimensional case:
begin{align}
&int x^2exp(-ax^2+bx+c)\
&=exp(c) int x^2 exp(-ax^2 + bx)\
&=exp(c) int x^2 exp(-a(x - frac{b}{2a})^2 + frac{b^2}{4a})\
&= exp(c)exp(frac{b^2}{4a})int x^2 exp(-a(x-frac{b}{2a})^2)dx\
end{align}
By change of variable
let $u = x-frac{b}{2a} implies du = dx$ and $x = u + frac{b}{2a}$
$x^2 = u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}$
we have
begin{align}
&=exp(c)exp(frac{b^2}{4a})int (u^2 + 2ufrac{b}{2a} + frac{b^2}{4a^2}) exp(-a(u)^2)du\
&= exp(c + frac{b^2}{4a}) big(int u^2 exp(-a(u)^2)du + int 2ufrac{b}{2a}exp(-a(u)^2)du + int frac{b^2}{4a^2} exp(-a(u)^2)du big)
end{align}
for each three terms in the big bracket;
$$int^{infty}_{infty} u^2 exp(-a(u)^2)du = dfrac{sqrt{{pi}}}{2a^frac{3}{2}}$$
$$int^{infty}_{infty} 2ufrac{b}{2a} exp(-a(u)^2)du = 0 $$
$$int^{infty}_{infty} frac{b^2}{4a^2} exp(-a(u)^2)du = dfrac{sqrt{{pi}}b^2}{4a^frac{5}{2}}$$
Finally; leads me to the final solution of
$$ exp(c + frac{b^2}{4a}) sqrt{{pi}} (dfrac{1}{2a^frac{3}{2}} + dfrac{b^2}{4a^frac{5}{2}} )$$
However, I'm having trouble to generalize it to high dimension. The answer should a vector in $mathbb{R}^{DxD}$
My intuition based on Normal distribution in high dimension tells my the answer should be look like
$$exp(c + frac{b^Tb}{4det(A)})pi^{frac{D}{2}} Big( dots Big)$$
But I couldn't make the bracket term in one dimension to higher dimension while still keeps the final solution a vector with dimension $DxD$ (it looks like it will be ends up with a scalar). Any helps Thanks
probability integration
probability integration
edited Jan 29 at 1:57
ElleryL
asked Jan 28 at 1:40
ElleryLElleryL
725519
725519
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090344%2fextend-this-integral-to-higher-dimension%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090344%2fextend-this-integral-to-higher-dimension%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown