$f(x)=alpha e^{-x^2-beta x}$ Find $alpha$ and $beta$ . Expectation is given.












0












$begingroup$



Let the probability density function of a random variable $X$ be given
by



$f(x)=alpha e^{-x^2-beta x} infty<x<infty $



If $E(X)= -dfrac{1}{2}$ then



$(A) alpha =dfrac{e^{frac{-1}{4}}}{sqrt pi}$ and $beta=1$



$(B) alpha =dfrac{e^{frac{-1}{4}}}{sqrt pi}$ and $beta=-1$



$(C) alpha =e^frac{-1}{4}sqrt pi$ and $beta=-1$



$(D) alpha =e^frac{-1}{4}sqrt pi$ and $beta=1$




The way I did this question:



$int_{-infty}^{infty}f(x)dx=int_{-infty}^{infty}alpha e^{-(x^2+beta x +frac{beta^2}{4}-frac{beta^2}{4})}dx=int_{-infty}^{infty}alpha e^{-(x+frac{beta}{2})^2}e^{frac{beta^2}{4}}dx=1 $



put $y=(x+frac{beta}{2})$



$int_{-infty}^{infty}alpha e^{-(y)^2}e^{frac{beta^2}{4}}dx=alphasqrt{pi}e^{frac{beta^2}{4}}=1implies alpha=dfrac{e^{frac{-beta^2}{4}}}{sqrt{pi}}$



Now using $E(X)=int_{-infty}^{infty}xalpha e^{-(x+frac{beta}{2})^2}e^{frac{beta^2}{4}}dx$



put $y=(x+frac{beta}{2})$



$E(X)=int_{-infty}^{infty}(y-frac{beta}{2})alpha e^{-(y)^2}e^{frac{beta^2}{4}}dx=underbrace{alpha e^{frac{beta^2}{4}} int_{-infty}^{infty}(y) e^{-(y)^2}dx}_{text {odd function}}-frac{beta}{2}underbrace{int_{-infty}^{infty}alpha e^{-(y)^2}e^{frac{-beta^2}{4}}}_{text{pdf}}dx$



$0-dfrac{beta}{2}=-dfrac{1}{2} implies fbox {$beta$ =1}$ and $fbox{$alpha=dfrac{e^{frac{-1}{4}}}{sqrt{pi}}$} $



Somehow after doing rigorous calculations, I got this answer but this question came in 2 marks so I am looking for a quick way out. Any alternate solution which less time consuming ?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$



    Let the probability density function of a random variable $X$ be given
    by



    $f(x)=alpha e^{-x^2-beta x} infty<x<infty $



    If $E(X)= -dfrac{1}{2}$ then



    $(A) alpha =dfrac{e^{frac{-1}{4}}}{sqrt pi}$ and $beta=1$



    $(B) alpha =dfrac{e^{frac{-1}{4}}}{sqrt pi}$ and $beta=-1$



    $(C) alpha =e^frac{-1}{4}sqrt pi$ and $beta=-1$



    $(D) alpha =e^frac{-1}{4}sqrt pi$ and $beta=1$




    The way I did this question:



    $int_{-infty}^{infty}f(x)dx=int_{-infty}^{infty}alpha e^{-(x^2+beta x +frac{beta^2}{4}-frac{beta^2}{4})}dx=int_{-infty}^{infty}alpha e^{-(x+frac{beta}{2})^2}e^{frac{beta^2}{4}}dx=1 $



    put $y=(x+frac{beta}{2})$



    $int_{-infty}^{infty}alpha e^{-(y)^2}e^{frac{beta^2}{4}}dx=alphasqrt{pi}e^{frac{beta^2}{4}}=1implies alpha=dfrac{e^{frac{-beta^2}{4}}}{sqrt{pi}}$



    Now using $E(X)=int_{-infty}^{infty}xalpha e^{-(x+frac{beta}{2})^2}e^{frac{beta^2}{4}}dx$



    put $y=(x+frac{beta}{2})$



    $E(X)=int_{-infty}^{infty}(y-frac{beta}{2})alpha e^{-(y)^2}e^{frac{beta^2}{4}}dx=underbrace{alpha e^{frac{beta^2}{4}} int_{-infty}^{infty}(y) e^{-(y)^2}dx}_{text {odd function}}-frac{beta}{2}underbrace{int_{-infty}^{infty}alpha e^{-(y)^2}e^{frac{-beta^2}{4}}}_{text{pdf}}dx$



    $0-dfrac{beta}{2}=-dfrac{1}{2} implies fbox {$beta$ =1}$ and $fbox{$alpha=dfrac{e^{frac{-1}{4}}}{sqrt{pi}}$} $



    Somehow after doing rigorous calculations, I got this answer but this question came in 2 marks so I am looking for a quick way out. Any alternate solution which less time consuming ?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$



      Let the probability density function of a random variable $X$ be given
      by



      $f(x)=alpha e^{-x^2-beta x} infty<x<infty $



      If $E(X)= -dfrac{1}{2}$ then



      $(A) alpha =dfrac{e^{frac{-1}{4}}}{sqrt pi}$ and $beta=1$



      $(B) alpha =dfrac{e^{frac{-1}{4}}}{sqrt pi}$ and $beta=-1$



      $(C) alpha =e^frac{-1}{4}sqrt pi$ and $beta=-1$



      $(D) alpha =e^frac{-1}{4}sqrt pi$ and $beta=1$




      The way I did this question:



      $int_{-infty}^{infty}f(x)dx=int_{-infty}^{infty}alpha e^{-(x^2+beta x +frac{beta^2}{4}-frac{beta^2}{4})}dx=int_{-infty}^{infty}alpha e^{-(x+frac{beta}{2})^2}e^{frac{beta^2}{4}}dx=1 $



      put $y=(x+frac{beta}{2})$



      $int_{-infty}^{infty}alpha e^{-(y)^2}e^{frac{beta^2}{4}}dx=alphasqrt{pi}e^{frac{beta^2}{4}}=1implies alpha=dfrac{e^{frac{-beta^2}{4}}}{sqrt{pi}}$



      Now using $E(X)=int_{-infty}^{infty}xalpha e^{-(x+frac{beta}{2})^2}e^{frac{beta^2}{4}}dx$



      put $y=(x+frac{beta}{2})$



      $E(X)=int_{-infty}^{infty}(y-frac{beta}{2})alpha e^{-(y)^2}e^{frac{beta^2}{4}}dx=underbrace{alpha e^{frac{beta^2}{4}} int_{-infty}^{infty}(y) e^{-(y)^2}dx}_{text {odd function}}-frac{beta}{2}underbrace{int_{-infty}^{infty}alpha e^{-(y)^2}e^{frac{-beta^2}{4}}}_{text{pdf}}dx$



      $0-dfrac{beta}{2}=-dfrac{1}{2} implies fbox {$beta$ =1}$ and $fbox{$alpha=dfrac{e^{frac{-1}{4}}}{sqrt{pi}}$} $



      Somehow after doing rigorous calculations, I got this answer but this question came in 2 marks so I am looking for a quick way out. Any alternate solution which less time consuming ?










      share|cite|improve this question









      $endgroup$





      Let the probability density function of a random variable $X$ be given
      by



      $f(x)=alpha e^{-x^2-beta x} infty<x<infty $



      If $E(X)= -dfrac{1}{2}$ then



      $(A) alpha =dfrac{e^{frac{-1}{4}}}{sqrt pi}$ and $beta=1$



      $(B) alpha =dfrac{e^{frac{-1}{4}}}{sqrt pi}$ and $beta=-1$



      $(C) alpha =e^frac{-1}{4}sqrt pi$ and $beta=-1$



      $(D) alpha =e^frac{-1}{4}sqrt pi$ and $beta=1$




      The way I did this question:



      $int_{-infty}^{infty}f(x)dx=int_{-infty}^{infty}alpha e^{-(x^2+beta x +frac{beta^2}{4}-frac{beta^2}{4})}dx=int_{-infty}^{infty}alpha e^{-(x+frac{beta}{2})^2}e^{frac{beta^2}{4}}dx=1 $



      put $y=(x+frac{beta}{2})$



      $int_{-infty}^{infty}alpha e^{-(y)^2}e^{frac{beta^2}{4}}dx=alphasqrt{pi}e^{frac{beta^2}{4}}=1implies alpha=dfrac{e^{frac{-beta^2}{4}}}{sqrt{pi}}$



      Now using $E(X)=int_{-infty}^{infty}xalpha e^{-(x+frac{beta}{2})^2}e^{frac{beta^2}{4}}dx$



      put $y=(x+frac{beta}{2})$



      $E(X)=int_{-infty}^{infty}(y-frac{beta}{2})alpha e^{-(y)^2}e^{frac{beta^2}{4}}dx=underbrace{alpha e^{frac{beta^2}{4}} int_{-infty}^{infty}(y) e^{-(y)^2}dx}_{text {odd function}}-frac{beta}{2}underbrace{int_{-infty}^{infty}alpha e^{-(y)^2}e^{frac{-beta^2}{4}}}_{text{pdf}}dx$



      $0-dfrac{beta}{2}=-dfrac{1}{2} implies fbox {$beta$ =1}$ and $fbox{$alpha=dfrac{e^{frac{-1}{4}}}{sqrt{pi}}$} $



      Somehow after doing rigorous calculations, I got this answer but this question came in 2 marks so I am looking for a quick way out. Any alternate solution which less time consuming ?







      probability statistics expected-value






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 27 at 12:44









      Daman deepDaman deep

      756419




      756419






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          $f(x)$ is in the form of a normal PDF: $frac{1}{sqrt{2pisigma^2}}exp(-(x-mu)^2/2sigma^2)$, which should be equal to $alphaexp(-x^2-beta x)$. Coefficients should match in LHS and RHS, so $2sigma^2=1$ and $E[X]=mu=-1/2$. Then, LHS becomes
          $$frac{1}{sqrt{pi}}exp(-x^2+2mu x - mu^2)=alphaexp(-x^2-beta x)$$
          which gives you $beta=1$ and $alpha=frac{exp(-1/4)}{sqrt{pi}}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Omg I feel so dumb now .
            $endgroup$
            – Daman deep
            Jan 27 at 13:07










          • $begingroup$
            no you're path independent :)
            $endgroup$
            – gunes
            Jan 27 at 13:08











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089516%2ffx-alpha-e-x2-beta-x-find-alpha-and-beta-expectation-is-given%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          $f(x)$ is in the form of a normal PDF: $frac{1}{sqrt{2pisigma^2}}exp(-(x-mu)^2/2sigma^2)$, which should be equal to $alphaexp(-x^2-beta x)$. Coefficients should match in LHS and RHS, so $2sigma^2=1$ and $E[X]=mu=-1/2$. Then, LHS becomes
          $$frac{1}{sqrt{pi}}exp(-x^2+2mu x - mu^2)=alphaexp(-x^2-beta x)$$
          which gives you $beta=1$ and $alpha=frac{exp(-1/4)}{sqrt{pi}}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Omg I feel so dumb now .
            $endgroup$
            – Daman deep
            Jan 27 at 13:07










          • $begingroup$
            no you're path independent :)
            $endgroup$
            – gunes
            Jan 27 at 13:08
















          2












          $begingroup$

          $f(x)$ is in the form of a normal PDF: $frac{1}{sqrt{2pisigma^2}}exp(-(x-mu)^2/2sigma^2)$, which should be equal to $alphaexp(-x^2-beta x)$. Coefficients should match in LHS and RHS, so $2sigma^2=1$ and $E[X]=mu=-1/2$. Then, LHS becomes
          $$frac{1}{sqrt{pi}}exp(-x^2+2mu x - mu^2)=alphaexp(-x^2-beta x)$$
          which gives you $beta=1$ and $alpha=frac{exp(-1/4)}{sqrt{pi}}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Omg I feel so dumb now .
            $endgroup$
            – Daman deep
            Jan 27 at 13:07










          • $begingroup$
            no you're path independent :)
            $endgroup$
            – gunes
            Jan 27 at 13:08














          2












          2








          2





          $begingroup$

          $f(x)$ is in the form of a normal PDF: $frac{1}{sqrt{2pisigma^2}}exp(-(x-mu)^2/2sigma^2)$, which should be equal to $alphaexp(-x^2-beta x)$. Coefficients should match in LHS and RHS, so $2sigma^2=1$ and $E[X]=mu=-1/2$. Then, LHS becomes
          $$frac{1}{sqrt{pi}}exp(-x^2+2mu x - mu^2)=alphaexp(-x^2-beta x)$$
          which gives you $beta=1$ and $alpha=frac{exp(-1/4)}{sqrt{pi}}$.






          share|cite|improve this answer









          $endgroup$



          $f(x)$ is in the form of a normal PDF: $frac{1}{sqrt{2pisigma^2}}exp(-(x-mu)^2/2sigma^2)$, which should be equal to $alphaexp(-x^2-beta x)$. Coefficients should match in LHS and RHS, so $2sigma^2=1$ and $E[X]=mu=-1/2$. Then, LHS becomes
          $$frac{1}{sqrt{pi}}exp(-x^2+2mu x - mu^2)=alphaexp(-x^2-beta x)$$
          which gives you $beta=1$ and $alpha=frac{exp(-1/4)}{sqrt{pi}}$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 27 at 13:03









          gunesgunes

          3747




          3747












          • $begingroup$
            Omg I feel so dumb now .
            $endgroup$
            – Daman deep
            Jan 27 at 13:07










          • $begingroup$
            no you're path independent :)
            $endgroup$
            – gunes
            Jan 27 at 13:08


















          • $begingroup$
            Omg I feel so dumb now .
            $endgroup$
            – Daman deep
            Jan 27 at 13:07










          • $begingroup$
            no you're path independent :)
            $endgroup$
            – gunes
            Jan 27 at 13:08
















          $begingroup$
          Omg I feel so dumb now .
          $endgroup$
          – Daman deep
          Jan 27 at 13:07




          $begingroup$
          Omg I feel so dumb now .
          $endgroup$
          – Daman deep
          Jan 27 at 13:07












          $begingroup$
          no you're path independent :)
          $endgroup$
          – gunes
          Jan 27 at 13:08




          $begingroup$
          no you're path independent :)
          $endgroup$
          – gunes
          Jan 27 at 13:08


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089516%2ffx-alpha-e-x2-beta-x-find-alpha-and-beta-expectation-is-given%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith