Greatest common denominator: $xmid a$ and $xmid b$ iff $xmidgcd(a,b)$












0












$begingroup$


For $a,b$ in the natural numbers. How do I prove that $x$ divides $a$ and $x$ divides $b$ iff $x$ divides $gcd(a,b)$.



Please no proofs using theorems.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    See Greatest common divisor : "the gcd of two numbers $a$ and $b$ is the largest positive integer that divides the numbers."
    $endgroup$
    – Mauro ALLEGRANZA
    Sep 29 '16 at 8:54










  • $begingroup$
    @MauroALLEGRANZA if it is so trivial to you would you mind helping me out?
    $endgroup$
    – john
    Sep 29 '16 at 9:02










  • $begingroup$
    You can see this post : concise-proof-that-every-common-divisor-divides-gcd-without-bezouts-identity
    $endgroup$
    – Mauro ALLEGRANZA
    Sep 29 '16 at 9:02










  • $begingroup$
    The side : if it divides GCD then it divides both is trivial ...
    $endgroup$
    – Mauro ALLEGRANZA
    Sep 29 '16 at 9:03










  • $begingroup$
    That's the definition of gcd of course.
    $endgroup$
    – Yoshua Yonatan
    Sep 29 '16 at 9:10
















0












$begingroup$


For $a,b$ in the natural numbers. How do I prove that $x$ divides $a$ and $x$ divides $b$ iff $x$ divides $gcd(a,b)$.



Please no proofs using theorems.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    See Greatest common divisor : "the gcd of two numbers $a$ and $b$ is the largest positive integer that divides the numbers."
    $endgroup$
    – Mauro ALLEGRANZA
    Sep 29 '16 at 8:54










  • $begingroup$
    @MauroALLEGRANZA if it is so trivial to you would you mind helping me out?
    $endgroup$
    – john
    Sep 29 '16 at 9:02










  • $begingroup$
    You can see this post : concise-proof-that-every-common-divisor-divides-gcd-without-bezouts-identity
    $endgroup$
    – Mauro ALLEGRANZA
    Sep 29 '16 at 9:02










  • $begingroup$
    The side : if it divides GCD then it divides both is trivial ...
    $endgroup$
    – Mauro ALLEGRANZA
    Sep 29 '16 at 9:03










  • $begingroup$
    That's the definition of gcd of course.
    $endgroup$
    – Yoshua Yonatan
    Sep 29 '16 at 9:10














0












0








0





$begingroup$


For $a,b$ in the natural numbers. How do I prove that $x$ divides $a$ and $x$ divides $b$ iff $x$ divides $gcd(a,b)$.



Please no proofs using theorems.










share|cite|improve this question











$endgroup$




For $a,b$ in the natural numbers. How do I prove that $x$ divides $a$ and $x$ divides $b$ iff $x$ divides $gcd(a,b)$.



Please no proofs using theorems.







elementary-number-theory divisibility greatest-common-divisor






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 27 at 11:01









Martin Sleziak

44.9k10122276




44.9k10122276










asked Sep 29 '16 at 8:51









johnjohn

946415




946415








  • 1




    $begingroup$
    See Greatest common divisor : "the gcd of two numbers $a$ and $b$ is the largest positive integer that divides the numbers."
    $endgroup$
    – Mauro ALLEGRANZA
    Sep 29 '16 at 8:54










  • $begingroup$
    @MauroALLEGRANZA if it is so trivial to you would you mind helping me out?
    $endgroup$
    – john
    Sep 29 '16 at 9:02










  • $begingroup$
    You can see this post : concise-proof-that-every-common-divisor-divides-gcd-without-bezouts-identity
    $endgroup$
    – Mauro ALLEGRANZA
    Sep 29 '16 at 9:02










  • $begingroup$
    The side : if it divides GCD then it divides both is trivial ...
    $endgroup$
    – Mauro ALLEGRANZA
    Sep 29 '16 at 9:03










  • $begingroup$
    That's the definition of gcd of course.
    $endgroup$
    – Yoshua Yonatan
    Sep 29 '16 at 9:10














  • 1




    $begingroup$
    See Greatest common divisor : "the gcd of two numbers $a$ and $b$ is the largest positive integer that divides the numbers."
    $endgroup$
    – Mauro ALLEGRANZA
    Sep 29 '16 at 8:54










  • $begingroup$
    @MauroALLEGRANZA if it is so trivial to you would you mind helping me out?
    $endgroup$
    – john
    Sep 29 '16 at 9:02










  • $begingroup$
    You can see this post : concise-proof-that-every-common-divisor-divides-gcd-without-bezouts-identity
    $endgroup$
    – Mauro ALLEGRANZA
    Sep 29 '16 at 9:02










  • $begingroup$
    The side : if it divides GCD then it divides both is trivial ...
    $endgroup$
    – Mauro ALLEGRANZA
    Sep 29 '16 at 9:03










  • $begingroup$
    That's the definition of gcd of course.
    $endgroup$
    – Yoshua Yonatan
    Sep 29 '16 at 9:10








1




1




$begingroup$
See Greatest common divisor : "the gcd of two numbers $a$ and $b$ is the largest positive integer that divides the numbers."
$endgroup$
– Mauro ALLEGRANZA
Sep 29 '16 at 8:54




$begingroup$
See Greatest common divisor : "the gcd of two numbers $a$ and $b$ is the largest positive integer that divides the numbers."
$endgroup$
– Mauro ALLEGRANZA
Sep 29 '16 at 8:54












$begingroup$
@MauroALLEGRANZA if it is so trivial to you would you mind helping me out?
$endgroup$
– john
Sep 29 '16 at 9:02




$begingroup$
@MauroALLEGRANZA if it is so trivial to you would you mind helping me out?
$endgroup$
– john
Sep 29 '16 at 9:02












$begingroup$
You can see this post : concise-proof-that-every-common-divisor-divides-gcd-without-bezouts-identity
$endgroup$
– Mauro ALLEGRANZA
Sep 29 '16 at 9:02




$begingroup$
You can see this post : concise-proof-that-every-common-divisor-divides-gcd-without-bezouts-identity
$endgroup$
– Mauro ALLEGRANZA
Sep 29 '16 at 9:02












$begingroup$
The side : if it divides GCD then it divides both is trivial ...
$endgroup$
– Mauro ALLEGRANZA
Sep 29 '16 at 9:03




$begingroup$
The side : if it divides GCD then it divides both is trivial ...
$endgroup$
– Mauro ALLEGRANZA
Sep 29 '16 at 9:03












$begingroup$
That's the definition of gcd of course.
$endgroup$
– Yoshua Yonatan
Sep 29 '16 at 9:10




$begingroup$
That's the definition of gcd of course.
$endgroup$
– Yoshua Yonatan
Sep 29 '16 at 9:10










3 Answers
3






active

oldest

votes


















0












$begingroup$

$x|a $. let $a=a'x $. Let $d=gcd (a,b) $. Let $a=Ad=a'x $. By unique factorization we can "break" this up to $a =(A)(d)=(A'x')(d'x")=(A'd')(x'x")=a'x$.



In other words $A'$ is a common factor of $A$ and $a'$, $x'$ is a common factor of $A $ and $x $, etc.



$x|b $. Let $b=b'x $. Let $b=Bd=b'x $.



So $b=B (d'x")=b'(x'x")$. By unique factoization, we can break this to: $b=(B'x')(d'x")=(b"d')(x'x") $.



Notice $d'x'x"=x'd $ is a common factor of $a$ and $b $.



But $d$ is the greatest common divisor. So $dx'le d$ so $x' =1$ and $x"=x $ $A'=1$ and $B'=1$.



So $a=Ad=Ad'x$ and $b=Bd=d'x$ and $d =d'x $ and $x|d=gcd (a,b)$



====



If $x|gcd (a,b) $ and $gcd (a,b)|a $ then $x|a $. As $gcd (a,b)|b $, $x|b $.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    You have to translate the word 'divide' into the language of ideals. We say that $a$ divides $b$ if $I_a supset I_b$ (e.g. the set of multiples of $5$ contains the set of multiples of $15$). So for every common divisor $c$ of $a$ and $b$ we have $I_c supset I_a$ and $I_c supset I_b$ so that $I_c supset I_a cup I_b$. The smallest ideal that contains $I_a cup I_b$ is $I_{gcd(a,b)}$. This can be proved by using the property $I_{uv} = I_u cup I_v$ and taking the intersection over all common factors of $a$ and $b$. Viewed like this what you have to prove is $I_x supset I_a, I_x supset I_b iff I_x supset I_{gcd(a,b)}$.



    Example $a = 30, b = 20 $: $I_a = {0, 30, 60, 90, ldots}$, $I_b = {0, 20, 40, 60, ldots}$. Then $2$ and $5$ being the common divisors of $a$ and $b$ : $I_{gcd(a,b)} = {0, 2, 4, 6, 8, ldots} cap {0, 5, 10, 15, 20, ldots} = {0, 10, 20, 30, 40, ldots}$. The proposition now sounds like $I_x supset {0, 30, 60, 90, ldots}, I_x supset {0, 20, 40, 60, ldots} iff I_x supset {0, 10, 20, 30, 40, ldots}$.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Using fundamental theorem of arithmetic



      $$displaystyle a = prod_{i=1}^{k}p_i^{alpha_i} ,, , quad b = prod_{i=1}^{k}p_i^{beta_i}$$



      We have : $displaystylegcd(a,b)=prod_{i=1}^{k}p_i^{min(alpha_i, beta_i)}$



      If $x | a$ and $x | b$ then $x = displaystyle prod_{i=1}^{k}p_i^{gamma_i}$ , with $forall i in {1,2,cdots,k} ,, : ,, gamma_i leq alpha_i text{ and } gamma_i leq beta_i$



      Then $forall i in {1,2,cdots,k} ,, : ,, gamma_i leq min(alpha_i, beta_i)$



      Then $x$ devide $gcd(a, b)$



      And we have $gcd(a,b)$ devide $a$ and $b$, then if $x$ devide $gcd(a,b)$, $x$ will devide $a$ and $b$.



      conclusion:



      $$d = gcd(a,b) iff left{begin{matrix}d | a , text{ and } , d | b \ x | a , text{et} , x | b implies x | dend{matrix}right.$$






      share|cite|improve this answer











      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1946246%2fgreatest-common-denominator-x-mid-a-and-x-mid-b-iff-x-mid-gcda-b%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        0












        $begingroup$

        $x|a $. let $a=a'x $. Let $d=gcd (a,b) $. Let $a=Ad=a'x $. By unique factorization we can "break" this up to $a =(A)(d)=(A'x')(d'x")=(A'd')(x'x")=a'x$.



        In other words $A'$ is a common factor of $A$ and $a'$, $x'$ is a common factor of $A $ and $x $, etc.



        $x|b $. Let $b=b'x $. Let $b=Bd=b'x $.



        So $b=B (d'x")=b'(x'x")$. By unique factoization, we can break this to: $b=(B'x')(d'x")=(b"d')(x'x") $.



        Notice $d'x'x"=x'd $ is a common factor of $a$ and $b $.



        But $d$ is the greatest common divisor. So $dx'le d$ so $x' =1$ and $x"=x $ $A'=1$ and $B'=1$.



        So $a=Ad=Ad'x$ and $b=Bd=d'x$ and $d =d'x $ and $x|d=gcd (a,b)$



        ====



        If $x|gcd (a,b) $ and $gcd (a,b)|a $ then $x|a $. As $gcd (a,b)|b $, $x|b $.






        share|cite|improve this answer









        $endgroup$


















          0












          $begingroup$

          $x|a $. let $a=a'x $. Let $d=gcd (a,b) $. Let $a=Ad=a'x $. By unique factorization we can "break" this up to $a =(A)(d)=(A'x')(d'x")=(A'd')(x'x")=a'x$.



          In other words $A'$ is a common factor of $A$ and $a'$, $x'$ is a common factor of $A $ and $x $, etc.



          $x|b $. Let $b=b'x $. Let $b=Bd=b'x $.



          So $b=B (d'x")=b'(x'x")$. By unique factoization, we can break this to: $b=(B'x')(d'x")=(b"d')(x'x") $.



          Notice $d'x'x"=x'd $ is a common factor of $a$ and $b $.



          But $d$ is the greatest common divisor. So $dx'le d$ so $x' =1$ and $x"=x $ $A'=1$ and $B'=1$.



          So $a=Ad=Ad'x$ and $b=Bd=d'x$ and $d =d'x $ and $x|d=gcd (a,b)$



          ====



          If $x|gcd (a,b) $ and $gcd (a,b)|a $ then $x|a $. As $gcd (a,b)|b $, $x|b $.






          share|cite|improve this answer









          $endgroup$
















            0












            0








            0





            $begingroup$

            $x|a $. let $a=a'x $. Let $d=gcd (a,b) $. Let $a=Ad=a'x $. By unique factorization we can "break" this up to $a =(A)(d)=(A'x')(d'x")=(A'd')(x'x")=a'x$.



            In other words $A'$ is a common factor of $A$ and $a'$, $x'$ is a common factor of $A $ and $x $, etc.



            $x|b $. Let $b=b'x $. Let $b=Bd=b'x $.



            So $b=B (d'x")=b'(x'x")$. By unique factoization, we can break this to: $b=(B'x')(d'x")=(b"d')(x'x") $.



            Notice $d'x'x"=x'd $ is a common factor of $a$ and $b $.



            But $d$ is the greatest common divisor. So $dx'le d$ so $x' =1$ and $x"=x $ $A'=1$ and $B'=1$.



            So $a=Ad=Ad'x$ and $b=Bd=d'x$ and $d =d'x $ and $x|d=gcd (a,b)$



            ====



            If $x|gcd (a,b) $ and $gcd (a,b)|a $ then $x|a $. As $gcd (a,b)|b $, $x|b $.






            share|cite|improve this answer









            $endgroup$



            $x|a $. let $a=a'x $. Let $d=gcd (a,b) $. Let $a=Ad=a'x $. By unique factorization we can "break" this up to $a =(A)(d)=(A'x')(d'x")=(A'd')(x'x")=a'x$.



            In other words $A'$ is a common factor of $A$ and $a'$, $x'$ is a common factor of $A $ and $x $, etc.



            $x|b $. Let $b=b'x $. Let $b=Bd=b'x $.



            So $b=B (d'x")=b'(x'x")$. By unique factoization, we can break this to: $b=(B'x')(d'x")=(b"d')(x'x") $.



            Notice $d'x'x"=x'd $ is a common factor of $a$ and $b $.



            But $d$ is the greatest common divisor. So $dx'le d$ so $x' =1$ and $x"=x $ $A'=1$ and $B'=1$.



            So $a=Ad=Ad'x$ and $b=Bd=d'x$ and $d =d'x $ and $x|d=gcd (a,b)$



            ====



            If $x|gcd (a,b) $ and $gcd (a,b)|a $ then $x|a $. As $gcd (a,b)|b $, $x|b $.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Sep 29 '16 at 12:04









            fleabloodfleablood

            73.2k22790




            73.2k22790























                0












                $begingroup$

                You have to translate the word 'divide' into the language of ideals. We say that $a$ divides $b$ if $I_a supset I_b$ (e.g. the set of multiples of $5$ contains the set of multiples of $15$). So for every common divisor $c$ of $a$ and $b$ we have $I_c supset I_a$ and $I_c supset I_b$ so that $I_c supset I_a cup I_b$. The smallest ideal that contains $I_a cup I_b$ is $I_{gcd(a,b)}$. This can be proved by using the property $I_{uv} = I_u cup I_v$ and taking the intersection over all common factors of $a$ and $b$. Viewed like this what you have to prove is $I_x supset I_a, I_x supset I_b iff I_x supset I_{gcd(a,b)}$.



                Example $a = 30, b = 20 $: $I_a = {0, 30, 60, 90, ldots}$, $I_b = {0, 20, 40, 60, ldots}$. Then $2$ and $5$ being the common divisors of $a$ and $b$ : $I_{gcd(a,b)} = {0, 2, 4, 6, 8, ldots} cap {0, 5, 10, 15, 20, ldots} = {0, 10, 20, 30, 40, ldots}$. The proposition now sounds like $I_x supset {0, 30, 60, 90, ldots}, I_x supset {0, 20, 40, 60, ldots} iff I_x supset {0, 10, 20, 30, 40, ldots}$.






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  You have to translate the word 'divide' into the language of ideals. We say that $a$ divides $b$ if $I_a supset I_b$ (e.g. the set of multiples of $5$ contains the set of multiples of $15$). So for every common divisor $c$ of $a$ and $b$ we have $I_c supset I_a$ and $I_c supset I_b$ so that $I_c supset I_a cup I_b$. The smallest ideal that contains $I_a cup I_b$ is $I_{gcd(a,b)}$. This can be proved by using the property $I_{uv} = I_u cup I_v$ and taking the intersection over all common factors of $a$ and $b$. Viewed like this what you have to prove is $I_x supset I_a, I_x supset I_b iff I_x supset I_{gcd(a,b)}$.



                  Example $a = 30, b = 20 $: $I_a = {0, 30, 60, 90, ldots}$, $I_b = {0, 20, 40, 60, ldots}$. Then $2$ and $5$ being the common divisors of $a$ and $b$ : $I_{gcd(a,b)} = {0, 2, 4, 6, 8, ldots} cap {0, 5, 10, 15, 20, ldots} = {0, 10, 20, 30, 40, ldots}$. The proposition now sounds like $I_x supset {0, 30, 60, 90, ldots}, I_x supset {0, 20, 40, 60, ldots} iff I_x supset {0, 10, 20, 30, 40, ldots}$.






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    You have to translate the word 'divide' into the language of ideals. We say that $a$ divides $b$ if $I_a supset I_b$ (e.g. the set of multiples of $5$ contains the set of multiples of $15$). So for every common divisor $c$ of $a$ and $b$ we have $I_c supset I_a$ and $I_c supset I_b$ so that $I_c supset I_a cup I_b$. The smallest ideal that contains $I_a cup I_b$ is $I_{gcd(a,b)}$. This can be proved by using the property $I_{uv} = I_u cup I_v$ and taking the intersection over all common factors of $a$ and $b$. Viewed like this what you have to prove is $I_x supset I_a, I_x supset I_b iff I_x supset I_{gcd(a,b)}$.



                    Example $a = 30, b = 20 $: $I_a = {0, 30, 60, 90, ldots}$, $I_b = {0, 20, 40, 60, ldots}$. Then $2$ and $5$ being the common divisors of $a$ and $b$ : $I_{gcd(a,b)} = {0, 2, 4, 6, 8, ldots} cap {0, 5, 10, 15, 20, ldots} = {0, 10, 20, 30, 40, ldots}$. The proposition now sounds like $I_x supset {0, 30, 60, 90, ldots}, I_x supset {0, 20, 40, 60, ldots} iff I_x supset {0, 10, 20, 30, 40, ldots}$.






                    share|cite|improve this answer









                    $endgroup$



                    You have to translate the word 'divide' into the language of ideals. We say that $a$ divides $b$ if $I_a supset I_b$ (e.g. the set of multiples of $5$ contains the set of multiples of $15$). So for every common divisor $c$ of $a$ and $b$ we have $I_c supset I_a$ and $I_c supset I_b$ so that $I_c supset I_a cup I_b$. The smallest ideal that contains $I_a cup I_b$ is $I_{gcd(a,b)}$. This can be proved by using the property $I_{uv} = I_u cup I_v$ and taking the intersection over all common factors of $a$ and $b$. Viewed like this what you have to prove is $I_x supset I_a, I_x supset I_b iff I_x supset I_{gcd(a,b)}$.



                    Example $a = 30, b = 20 $: $I_a = {0, 30, 60, 90, ldots}$, $I_b = {0, 20, 40, 60, ldots}$. Then $2$ and $5$ being the common divisors of $a$ and $b$ : $I_{gcd(a,b)} = {0, 2, 4, 6, 8, ldots} cap {0, 5, 10, 15, 20, ldots} = {0, 10, 20, 30, 40, ldots}$. The proposition now sounds like $I_x supset {0, 30, 60, 90, ldots}, I_x supset {0, 20, 40, 60, ldots} iff I_x supset {0, 10, 20, 30, 40, ldots}$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Oct 1 '16 at 20:20









                    Marc BogaertsMarc Bogaerts

                    4,14311021




                    4,14311021























                        0












                        $begingroup$

                        Using fundamental theorem of arithmetic



                        $$displaystyle a = prod_{i=1}^{k}p_i^{alpha_i} ,, , quad b = prod_{i=1}^{k}p_i^{beta_i}$$



                        We have : $displaystylegcd(a,b)=prod_{i=1}^{k}p_i^{min(alpha_i, beta_i)}$



                        If $x | a$ and $x | b$ then $x = displaystyle prod_{i=1}^{k}p_i^{gamma_i}$ , with $forall i in {1,2,cdots,k} ,, : ,, gamma_i leq alpha_i text{ and } gamma_i leq beta_i$



                        Then $forall i in {1,2,cdots,k} ,, : ,, gamma_i leq min(alpha_i, beta_i)$



                        Then $x$ devide $gcd(a, b)$



                        And we have $gcd(a,b)$ devide $a$ and $b$, then if $x$ devide $gcd(a,b)$, $x$ will devide $a$ and $b$.



                        conclusion:



                        $$d = gcd(a,b) iff left{begin{matrix}d | a , text{ and } , d | b \ x | a , text{et} , x | b implies x | dend{matrix}right.$$






                        share|cite|improve this answer











                        $endgroup$


















                          0












                          $begingroup$

                          Using fundamental theorem of arithmetic



                          $$displaystyle a = prod_{i=1}^{k}p_i^{alpha_i} ,, , quad b = prod_{i=1}^{k}p_i^{beta_i}$$



                          We have : $displaystylegcd(a,b)=prod_{i=1}^{k}p_i^{min(alpha_i, beta_i)}$



                          If $x | a$ and $x | b$ then $x = displaystyle prod_{i=1}^{k}p_i^{gamma_i}$ , with $forall i in {1,2,cdots,k} ,, : ,, gamma_i leq alpha_i text{ and } gamma_i leq beta_i$



                          Then $forall i in {1,2,cdots,k} ,, : ,, gamma_i leq min(alpha_i, beta_i)$



                          Then $x$ devide $gcd(a, b)$



                          And we have $gcd(a,b)$ devide $a$ and $b$, then if $x$ devide $gcd(a,b)$, $x$ will devide $a$ and $b$.



                          conclusion:



                          $$d = gcd(a,b) iff left{begin{matrix}d | a , text{ and } , d | b \ x | a , text{et} , x | b implies x | dend{matrix}right.$$






                          share|cite|improve this answer











                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            Using fundamental theorem of arithmetic



                            $$displaystyle a = prod_{i=1}^{k}p_i^{alpha_i} ,, , quad b = prod_{i=1}^{k}p_i^{beta_i}$$



                            We have : $displaystylegcd(a,b)=prod_{i=1}^{k}p_i^{min(alpha_i, beta_i)}$



                            If $x | a$ and $x | b$ then $x = displaystyle prod_{i=1}^{k}p_i^{gamma_i}$ , with $forall i in {1,2,cdots,k} ,, : ,, gamma_i leq alpha_i text{ and } gamma_i leq beta_i$



                            Then $forall i in {1,2,cdots,k} ,, : ,, gamma_i leq min(alpha_i, beta_i)$



                            Then $x$ devide $gcd(a, b)$



                            And we have $gcd(a,b)$ devide $a$ and $b$, then if $x$ devide $gcd(a,b)$, $x$ will devide $a$ and $b$.



                            conclusion:



                            $$d = gcd(a,b) iff left{begin{matrix}d | a , text{ and } , d | b \ x | a , text{et} , x | b implies x | dend{matrix}right.$$






                            share|cite|improve this answer











                            $endgroup$



                            Using fundamental theorem of arithmetic



                            $$displaystyle a = prod_{i=1}^{k}p_i^{alpha_i} ,, , quad b = prod_{i=1}^{k}p_i^{beta_i}$$



                            We have : $displaystylegcd(a,b)=prod_{i=1}^{k}p_i^{min(alpha_i, beta_i)}$



                            If $x | a$ and $x | b$ then $x = displaystyle prod_{i=1}^{k}p_i^{gamma_i}$ , with $forall i in {1,2,cdots,k} ,, : ,, gamma_i leq alpha_i text{ and } gamma_i leq beta_i$



                            Then $forall i in {1,2,cdots,k} ,, : ,, gamma_i leq min(alpha_i, beta_i)$



                            Then $x$ devide $gcd(a, b)$



                            And we have $gcd(a,b)$ devide $a$ and $b$, then if $x$ devide $gcd(a,b)$, $x$ will devide $a$ and $b$.



                            conclusion:



                            $$d = gcd(a,b) iff left{begin{matrix}d | a , text{ and } , d | b \ x | a , text{et} , x | b implies x | dend{matrix}right.$$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Jan 27 at 11:32

























                            answered Jan 27 at 11:26









                            LAGRIDALAGRIDA

                            295111




                            295111






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1946246%2fgreatest-common-denominator-x-mid-a-and-x-mid-b-iff-x-mid-gcda-b%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                How to fix TextFormField cause rebuild widget in Flutter

                                in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith