How do I show that $varphi(t)=(t,t^2,t^3)$ is a global chart
$begingroup$
Let $f_{1},f_{2}:mathbb R^{3} to mathbb R$, defined as
$f_{1}(x,y,z)=x^2+xy-y-z$
$f_{2}(x,y,z)=2x^2+3xy-2y-3z$
and $M:={(x,y,z) in mathbb R^{3}:f_{1}(x,y,z)=f_{2}(x,y,z)=0}$
I have shown that $M$ is a one-dimensional $C^{1}-$manifold. How do I go on to show that
the chart defined by: $varphi: mathbb R to mathbb R^{3}, varphi(t)=(t,t^2,t^3)$ is a global chart.
My understanding of a global chart is that $varphi$ would cover $M$ but how can I show this?
real-analysis measure-theory manifolds
$endgroup$
add a comment |
$begingroup$
Let $f_{1},f_{2}:mathbb R^{3} to mathbb R$, defined as
$f_{1}(x,y,z)=x^2+xy-y-z$
$f_{2}(x,y,z)=2x^2+3xy-2y-3z$
and $M:={(x,y,z) in mathbb R^{3}:f_{1}(x,y,z)=f_{2}(x,y,z)=0}$
I have shown that $M$ is a one-dimensional $C^{1}-$manifold. How do I go on to show that
the chart defined by: $varphi: mathbb R to mathbb R^{3}, varphi(t)=(t,t^2,t^3)$ is a global chart.
My understanding of a global chart is that $varphi$ would cover $M$ but how can I show this?
real-analysis measure-theory manifolds
$endgroup$
add a comment |
$begingroup$
Let $f_{1},f_{2}:mathbb R^{3} to mathbb R$, defined as
$f_{1}(x,y,z)=x^2+xy-y-z$
$f_{2}(x,y,z)=2x^2+3xy-2y-3z$
and $M:={(x,y,z) in mathbb R^{3}:f_{1}(x,y,z)=f_{2}(x,y,z)=0}$
I have shown that $M$ is a one-dimensional $C^{1}-$manifold. How do I go on to show that
the chart defined by: $varphi: mathbb R to mathbb R^{3}, varphi(t)=(t,t^2,t^3)$ is a global chart.
My understanding of a global chart is that $varphi$ would cover $M$ but how can I show this?
real-analysis measure-theory manifolds
$endgroup$
Let $f_{1},f_{2}:mathbb R^{3} to mathbb R$, defined as
$f_{1}(x,y,z)=x^2+xy-y-z$
$f_{2}(x,y,z)=2x^2+3xy-2y-3z$
and $M:={(x,y,z) in mathbb R^{3}:f_{1}(x,y,z)=f_{2}(x,y,z)=0}$
I have shown that $M$ is a one-dimensional $C^{1}-$manifold. How do I go on to show that
the chart defined by: $varphi: mathbb R to mathbb R^{3}, varphi(t)=(t,t^2,t^3)$ is a global chart.
My understanding of a global chart is that $varphi$ would cover $M$ but how can I show this?
real-analysis measure-theory manifolds
real-analysis measure-theory manifolds
asked Jan 22 at 22:50
SABOYSABOY
656311
656311
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The map $f:mathbb{R}rightarrowmathbb{R}^3$ defined by $f(t)=f(t,t^2,t^3)$ induces an homeomorphism between $mathbb{R}$ and $M$.
The image of $f$ is contained in $M$.
$t^2+tt^2-t^2-t^3=f_1(t,t^2,t^3)=0$
$2t^2+3tt^2-2t^2-3t^3=f_2(t,t^2,t^3)=0$.
This implies that $f(mathbb{R})subset M$.
Define $g:mathbb{R}^3rightarrowmathbb{R}$ by $g(x,y,z)=x$, its $h$ restriction to $M$ is the inverse of $f$.
$hcirc f(t)=g(t,t^2,t^3)=t$.
Let $(x,y,z)in M$, $fcirc h(x,y,z)=f(x)=(x,x^2,x^3)$.
We have $x^2+xy-y-z=0, 2x^2+3xy-2y-3z=0$ implies that:
$-3(x^2+xy-y-z)+2x^2+3xy-2y-3z=-3x^2-3xy+3y+3z+2x^2+3xy-2y-3z$
$=-x^2+y=0$, we deduce that $y=x^2$ and $z=x^2+xy-y=x^2+xx^2-x^2=x^3$. This shows that if $(x,y,z)in M, (x,y,z)=(x,x^2,x^3)$ and for every $(x,y,z)in M$, $fcirc h(x,y,z)=(x,y,z)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083826%2fhow-do-i-show-that-varphit-t-t2-t3-is-a-global-chart%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The map $f:mathbb{R}rightarrowmathbb{R}^3$ defined by $f(t)=f(t,t^2,t^3)$ induces an homeomorphism between $mathbb{R}$ and $M$.
The image of $f$ is contained in $M$.
$t^2+tt^2-t^2-t^3=f_1(t,t^2,t^3)=0$
$2t^2+3tt^2-2t^2-3t^3=f_2(t,t^2,t^3)=0$.
This implies that $f(mathbb{R})subset M$.
Define $g:mathbb{R}^3rightarrowmathbb{R}$ by $g(x,y,z)=x$, its $h$ restriction to $M$ is the inverse of $f$.
$hcirc f(t)=g(t,t^2,t^3)=t$.
Let $(x,y,z)in M$, $fcirc h(x,y,z)=f(x)=(x,x^2,x^3)$.
We have $x^2+xy-y-z=0, 2x^2+3xy-2y-3z=0$ implies that:
$-3(x^2+xy-y-z)+2x^2+3xy-2y-3z=-3x^2-3xy+3y+3z+2x^2+3xy-2y-3z$
$=-x^2+y=0$, we deduce that $y=x^2$ and $z=x^2+xy-y=x^2+xx^2-x^2=x^3$. This shows that if $(x,y,z)in M, (x,y,z)=(x,x^2,x^3)$ and for every $(x,y,z)in M$, $fcirc h(x,y,z)=(x,y,z)$.
$endgroup$
add a comment |
$begingroup$
The map $f:mathbb{R}rightarrowmathbb{R}^3$ defined by $f(t)=f(t,t^2,t^3)$ induces an homeomorphism between $mathbb{R}$ and $M$.
The image of $f$ is contained in $M$.
$t^2+tt^2-t^2-t^3=f_1(t,t^2,t^3)=0$
$2t^2+3tt^2-2t^2-3t^3=f_2(t,t^2,t^3)=0$.
This implies that $f(mathbb{R})subset M$.
Define $g:mathbb{R}^3rightarrowmathbb{R}$ by $g(x,y,z)=x$, its $h$ restriction to $M$ is the inverse of $f$.
$hcirc f(t)=g(t,t^2,t^3)=t$.
Let $(x,y,z)in M$, $fcirc h(x,y,z)=f(x)=(x,x^2,x^3)$.
We have $x^2+xy-y-z=0, 2x^2+3xy-2y-3z=0$ implies that:
$-3(x^2+xy-y-z)+2x^2+3xy-2y-3z=-3x^2-3xy+3y+3z+2x^2+3xy-2y-3z$
$=-x^2+y=0$, we deduce that $y=x^2$ and $z=x^2+xy-y=x^2+xx^2-x^2=x^3$. This shows that if $(x,y,z)in M, (x,y,z)=(x,x^2,x^3)$ and for every $(x,y,z)in M$, $fcirc h(x,y,z)=(x,y,z)$.
$endgroup$
add a comment |
$begingroup$
The map $f:mathbb{R}rightarrowmathbb{R}^3$ defined by $f(t)=f(t,t^2,t^3)$ induces an homeomorphism between $mathbb{R}$ and $M$.
The image of $f$ is contained in $M$.
$t^2+tt^2-t^2-t^3=f_1(t,t^2,t^3)=0$
$2t^2+3tt^2-2t^2-3t^3=f_2(t,t^2,t^3)=0$.
This implies that $f(mathbb{R})subset M$.
Define $g:mathbb{R}^3rightarrowmathbb{R}$ by $g(x,y,z)=x$, its $h$ restriction to $M$ is the inverse of $f$.
$hcirc f(t)=g(t,t^2,t^3)=t$.
Let $(x,y,z)in M$, $fcirc h(x,y,z)=f(x)=(x,x^2,x^3)$.
We have $x^2+xy-y-z=0, 2x^2+3xy-2y-3z=0$ implies that:
$-3(x^2+xy-y-z)+2x^2+3xy-2y-3z=-3x^2-3xy+3y+3z+2x^2+3xy-2y-3z$
$=-x^2+y=0$, we deduce that $y=x^2$ and $z=x^2+xy-y=x^2+xx^2-x^2=x^3$. This shows that if $(x,y,z)in M, (x,y,z)=(x,x^2,x^3)$ and for every $(x,y,z)in M$, $fcirc h(x,y,z)=(x,y,z)$.
$endgroup$
The map $f:mathbb{R}rightarrowmathbb{R}^3$ defined by $f(t)=f(t,t^2,t^3)$ induces an homeomorphism between $mathbb{R}$ and $M$.
The image of $f$ is contained in $M$.
$t^2+tt^2-t^2-t^3=f_1(t,t^2,t^3)=0$
$2t^2+3tt^2-2t^2-3t^3=f_2(t,t^2,t^3)=0$.
This implies that $f(mathbb{R})subset M$.
Define $g:mathbb{R}^3rightarrowmathbb{R}$ by $g(x,y,z)=x$, its $h$ restriction to $M$ is the inverse of $f$.
$hcirc f(t)=g(t,t^2,t^3)=t$.
Let $(x,y,z)in M$, $fcirc h(x,y,z)=f(x)=(x,x^2,x^3)$.
We have $x^2+xy-y-z=0, 2x^2+3xy-2y-3z=0$ implies that:
$-3(x^2+xy-y-z)+2x^2+3xy-2y-3z=-3x^2-3xy+3y+3z+2x^2+3xy-2y-3z$
$=-x^2+y=0$, we deduce that $y=x^2$ and $z=x^2+xy-y=x^2+xx^2-x^2=x^3$. This shows that if $(x,y,z)in M, (x,y,z)=(x,x^2,x^3)$ and for every $(x,y,z)in M$, $fcirc h(x,y,z)=(x,y,z)$.
answered Jan 23 at 0:04


Tsemo AristideTsemo Aristide
59.2k11445
59.2k11445
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083826%2fhow-do-i-show-that-varphit-t-t2-t3-is-a-global-chart%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown