How to interprete the regression plot obtained at the end of neural network regression for multiple outputs?












9















I have trained my Neural network model using MATLAB NN Toolbox. My network has multiple inputs and multiple outputs, 6 and 7 respectively, to be precise. I would like to clarify few questions based on it:-




  • The final regression plot showed at the end of the training shows a very good accuracy, R~0.99. However, since I have multiple outputs, I am confused as to which scatter plot does it represent? Shouldn't we have 7 target vs predicted plots for each of the output variable?


enter image description here




  • According to my knowledge, R^2 is a better method of commenting upon the accuracy of the model, whereas MATLAB reports R in its plot. Do I treat that R as R^2 or should I square the reported R value to obtain R^2.

  • I have generated the Matlab Script containing weight, bias and activation functions, as a final Result of the training. So shouldn't I be able to simply give my raw data as input and obtain the corresponding predicted output. I gave the exact same training set using the indices Matlab chose for training (to cross check), and plotted the predicted output vs actual output, but the result is not at all good. Definitely, not along the lines of R~0.99. Am I doing anything wrong?





function [y1] = myNeuralNetworkFunction_2(x1)
%MYNEURALNETWORKFUNCTION neural network simulation function.
% X = [torque T_exh lambda t_Spark N EGR];
% Y = [O2R CO2R HC NOX CO lambda_out T_exh2];
% Generated by Neural Network Toolbox function genFunction, 17-Dec-2018 07:13:04.
%
% [y1] = myNeuralNetworkFunction(x1) takes these arguments:
% x = Qx6 matrix, input #1
% and returns:
% y = Qx7 matrix, output #1
% where Q is the number of samples.

%#ok<*RPMT0>

% ===== NEURAL NETWORK CONSTANTS =====

% Input 1
x1_step1_xoffset = [-24;235.248;0.75;-20.678;550;0.799];
x1_step1_gain = [0.00353982300884956;0.00284355877067267;6.26959247648903;0.0275865874012055;0.000366568914956012;0.0533831576137729];
x1_step1_ymin = -1;

% Layer 1
b1 = [1.3808996210168685;-2.0990163849711894;0.9651733083552595;0.27000953282929346;-1.6781835509820286;-1.5110463684800366;-3.6257438832309905;2.1569498669085361;1.9204156230460485;-0.17704342477904209];
IW1_1 = [-0.032892214008082517 -0.55848270745152429 -0.0063993424771670616 -0.56161004933654057 2.7161844536020197 0.46415317073346513;-0.21395624254052176 -3.1570133640176681 0.71972178875396853 -1.9132557838515238 1.3365248285282931 -3.022721627052706;-1.1026780445896862 0.2324603066452392 0.14552308208231421 0.79194435276493658 -0.66254679969168417 0.070353201192052434;-0.017994515838487352 -0.097682677816992206 0.68844109281256027 -0.001684535122025588 0.013605622123872989 0.05810686279306107;0.5853667840629273 -2.9560683084876329 0.56713425120259764 -2.1854386350040116 1.2930115031659106 -2.7133159265497957;0.64316656469750333 -0.63667017646313084 0.50060179040086761 -0.86827897068177973 2.695456517458648 0.16822164719859456;-0.44666821007466739 4.0993786464616679 -0.89370838440321498 3.0445073606237933 -3.3015566360833453 -4.492874075961689;1.8337574137485424 2.6946232855369989 1.1140472073136622 1.6167763205944321 1.8573696127039145 -0.81922672766933646;-0.12561950922781362 3.0711045035224349 -0.6535751823440773 2.0590707752473199 -1.3267693770634292 2.8782780742777794;-0.013438026967107483 -0.025741311825949621 0.45460734966889638 0.045052447491038108 -0.21794568374100454 0.10667240367191703];

% Layer 2
b2 = [-0.96846557414356171;-0.2454718918618051;-0.7331628718025488;-1.0225195290982099;0.50307202195645395;-0.49497234988401961;-0.21817117469133171];
LW2_1 = [-0.97716474643411022 -0.23883775971686808 0.99238069915206006 0.4147649511973347 0.48504023209224734 -0.071372217431684551 0.054177719330469304 -0.25963474838320832 0.27368380212104881 0.063159321947246799;-0.15570858147605909 -0.18816739764334323 -0.3793600124951475 2.3851961990944681 0.38355142531334563 -0.75308427071748985 -0.1280128732536128 -1.361052031781103 0.6021878865831336 -0.24725687748503239;0.076251356114485525 -0.10178293627600112 0.10151304376762409 -0.46453434441403058 0.12114876632815359 0.062856969143306296 -0.0019628163322658364 -0.067809039768745916 0.071731544062023825 0.65700427778446913;0.17887084584125315 0.29122649575978238 0.37255802759192702 1.3684190468992126 0.60936238465090853 0.21955911453674043 0.28477957899364675 -0.051456306721251184 0.6519451272106177 -0.64479205028051967;0.25743349663436799 2.0668075180209979 0.59610776847961111 -3.2609682919282603 1.8824214917530881 0.33542869933904396 0.03604272669356564 -0.013842766338427388 3.8534510207741826 2.2266745660915586;-0.16136175574939746 0.10407287099228898 -0.13902245286490234 0.87616472446622717 -0.027079111747601223 0.024812287505204988 -0.030101536834009103 0.043168268669541855 0.12172932035587079 -0.27074383434206573;0.18714562505165402 0.35267726325386606 -0.029241400610813449 0.53053853235049087 0.58880054832728757 0.047959541165126809 0.16152268183097709 0.23419456403348898 0.83166785128608967 -0.66765237856750781];

% Output 1
y1_step1_ymin = -1;
y1_step1_gain = [0.114200879346771;0.145581598485951;0.000139011547272197;0.000456244862967996;2.05816254143146e-05;5.27704485488127;0.00284355877067267];
y1_step1_xoffset = [-0.045;1.122;2.706;17.108;493.726;0.75;235.248];

% ===== SIMULATION ========

% Dimensions
Q = size(x1,1); % samples

% Input 1
x1 = x1';
xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);

% Layer 1
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);

% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*a1;

% Output 1
y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
y1 = y1';
end

% ===== MODULE FUNCTIONS ========

% Map Minimum and Maximum Input Processing Function
function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin)
y = bsxfun(@minus,x,settings_xoffset);
y = bsxfun(@times,y,settings_gain);
y = bsxfun(@plus,y,settings_ymin);
end

% Sigmoid Symmetric Transfer Function
function a = tansig_apply(n)
a = 2 ./ (1 + exp(-2*n)) - 1;
end

% Map Minimum and Maximum Output Reverse-Processing Function
function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin)
x = bsxfun(@minus,y,settings_ymin);
x = bsxfun(@rdivide,x,settings_gain);
x = bsxfun(@plus,x,settings_xoffset);
end





The above one is the automatically generated code. The plot which I generated to cross-check the first variable is below:-






% X and Y are input and output - same as above
X_train = X(results.info1.train.indices,:);
y_train = Y(results.info1.train.indices,:);
out_train = myNeuralNetworkFunction_2(X_train);
scatter(y_train(:,1),out_train(:,1))





enter image description here










share|improve this question



























    9















    I have trained my Neural network model using MATLAB NN Toolbox. My network has multiple inputs and multiple outputs, 6 and 7 respectively, to be precise. I would like to clarify few questions based on it:-




    • The final regression plot showed at the end of the training shows a very good accuracy, R~0.99. However, since I have multiple outputs, I am confused as to which scatter plot does it represent? Shouldn't we have 7 target vs predicted plots for each of the output variable?


    enter image description here




    • According to my knowledge, R^2 is a better method of commenting upon the accuracy of the model, whereas MATLAB reports R in its plot. Do I treat that R as R^2 or should I square the reported R value to obtain R^2.

    • I have generated the Matlab Script containing weight, bias and activation functions, as a final Result of the training. So shouldn't I be able to simply give my raw data as input and obtain the corresponding predicted output. I gave the exact same training set using the indices Matlab chose for training (to cross check), and plotted the predicted output vs actual output, but the result is not at all good. Definitely, not along the lines of R~0.99. Am I doing anything wrong?





    function [y1] = myNeuralNetworkFunction_2(x1)
    %MYNEURALNETWORKFUNCTION neural network simulation function.
    % X = [torque T_exh lambda t_Spark N EGR];
    % Y = [O2R CO2R HC NOX CO lambda_out T_exh2];
    % Generated by Neural Network Toolbox function genFunction, 17-Dec-2018 07:13:04.
    %
    % [y1] = myNeuralNetworkFunction(x1) takes these arguments:
    % x = Qx6 matrix, input #1
    % and returns:
    % y = Qx7 matrix, output #1
    % where Q is the number of samples.

    %#ok<*RPMT0>

    % ===== NEURAL NETWORK CONSTANTS =====

    % Input 1
    x1_step1_xoffset = [-24;235.248;0.75;-20.678;550;0.799];
    x1_step1_gain = [0.00353982300884956;0.00284355877067267;6.26959247648903;0.0275865874012055;0.000366568914956012;0.0533831576137729];
    x1_step1_ymin = -1;

    % Layer 1
    b1 = [1.3808996210168685;-2.0990163849711894;0.9651733083552595;0.27000953282929346;-1.6781835509820286;-1.5110463684800366;-3.6257438832309905;2.1569498669085361;1.9204156230460485;-0.17704342477904209];
    IW1_1 = [-0.032892214008082517 -0.55848270745152429 -0.0063993424771670616 -0.56161004933654057 2.7161844536020197 0.46415317073346513;-0.21395624254052176 -3.1570133640176681 0.71972178875396853 -1.9132557838515238 1.3365248285282931 -3.022721627052706;-1.1026780445896862 0.2324603066452392 0.14552308208231421 0.79194435276493658 -0.66254679969168417 0.070353201192052434;-0.017994515838487352 -0.097682677816992206 0.68844109281256027 -0.001684535122025588 0.013605622123872989 0.05810686279306107;0.5853667840629273 -2.9560683084876329 0.56713425120259764 -2.1854386350040116 1.2930115031659106 -2.7133159265497957;0.64316656469750333 -0.63667017646313084 0.50060179040086761 -0.86827897068177973 2.695456517458648 0.16822164719859456;-0.44666821007466739 4.0993786464616679 -0.89370838440321498 3.0445073606237933 -3.3015566360833453 -4.492874075961689;1.8337574137485424 2.6946232855369989 1.1140472073136622 1.6167763205944321 1.8573696127039145 -0.81922672766933646;-0.12561950922781362 3.0711045035224349 -0.6535751823440773 2.0590707752473199 -1.3267693770634292 2.8782780742777794;-0.013438026967107483 -0.025741311825949621 0.45460734966889638 0.045052447491038108 -0.21794568374100454 0.10667240367191703];

    % Layer 2
    b2 = [-0.96846557414356171;-0.2454718918618051;-0.7331628718025488;-1.0225195290982099;0.50307202195645395;-0.49497234988401961;-0.21817117469133171];
    LW2_1 = [-0.97716474643411022 -0.23883775971686808 0.99238069915206006 0.4147649511973347 0.48504023209224734 -0.071372217431684551 0.054177719330469304 -0.25963474838320832 0.27368380212104881 0.063159321947246799;-0.15570858147605909 -0.18816739764334323 -0.3793600124951475 2.3851961990944681 0.38355142531334563 -0.75308427071748985 -0.1280128732536128 -1.361052031781103 0.6021878865831336 -0.24725687748503239;0.076251356114485525 -0.10178293627600112 0.10151304376762409 -0.46453434441403058 0.12114876632815359 0.062856969143306296 -0.0019628163322658364 -0.067809039768745916 0.071731544062023825 0.65700427778446913;0.17887084584125315 0.29122649575978238 0.37255802759192702 1.3684190468992126 0.60936238465090853 0.21955911453674043 0.28477957899364675 -0.051456306721251184 0.6519451272106177 -0.64479205028051967;0.25743349663436799 2.0668075180209979 0.59610776847961111 -3.2609682919282603 1.8824214917530881 0.33542869933904396 0.03604272669356564 -0.013842766338427388 3.8534510207741826 2.2266745660915586;-0.16136175574939746 0.10407287099228898 -0.13902245286490234 0.87616472446622717 -0.027079111747601223 0.024812287505204988 -0.030101536834009103 0.043168268669541855 0.12172932035587079 -0.27074383434206573;0.18714562505165402 0.35267726325386606 -0.029241400610813449 0.53053853235049087 0.58880054832728757 0.047959541165126809 0.16152268183097709 0.23419456403348898 0.83166785128608967 -0.66765237856750781];

    % Output 1
    y1_step1_ymin = -1;
    y1_step1_gain = [0.114200879346771;0.145581598485951;0.000139011547272197;0.000456244862967996;2.05816254143146e-05;5.27704485488127;0.00284355877067267];
    y1_step1_xoffset = [-0.045;1.122;2.706;17.108;493.726;0.75;235.248];

    % ===== SIMULATION ========

    % Dimensions
    Q = size(x1,1); % samples

    % Input 1
    x1 = x1';
    xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);

    % Layer 1
    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);

    % Layer 2
    a2 = repmat(b2,1,Q) + LW2_1*a1;

    % Output 1
    y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
    y1 = y1';
    end

    % ===== MODULE FUNCTIONS ========

    % Map Minimum and Maximum Input Processing Function
    function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin)
    y = bsxfun(@minus,x,settings_xoffset);
    y = bsxfun(@times,y,settings_gain);
    y = bsxfun(@plus,y,settings_ymin);
    end

    % Sigmoid Symmetric Transfer Function
    function a = tansig_apply(n)
    a = 2 ./ (1 + exp(-2*n)) - 1;
    end

    % Map Minimum and Maximum Output Reverse-Processing Function
    function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin)
    x = bsxfun(@minus,y,settings_ymin);
    x = bsxfun(@rdivide,x,settings_gain);
    x = bsxfun(@plus,x,settings_xoffset);
    end





    The above one is the automatically generated code. The plot which I generated to cross-check the first variable is below:-






    % X and Y are input and output - same as above
    X_train = X(results.info1.train.indices,:);
    y_train = Y(results.info1.train.indices,:);
    out_train = myNeuralNetworkFunction_2(X_train);
    scatter(y_train(:,1),out_train(:,1))





    enter image description here










    share|improve this question

























      9












      9








      9








      I have trained my Neural network model using MATLAB NN Toolbox. My network has multiple inputs and multiple outputs, 6 and 7 respectively, to be precise. I would like to clarify few questions based on it:-




      • The final regression plot showed at the end of the training shows a very good accuracy, R~0.99. However, since I have multiple outputs, I am confused as to which scatter plot does it represent? Shouldn't we have 7 target vs predicted plots for each of the output variable?


      enter image description here




      • According to my knowledge, R^2 is a better method of commenting upon the accuracy of the model, whereas MATLAB reports R in its plot. Do I treat that R as R^2 or should I square the reported R value to obtain R^2.

      • I have generated the Matlab Script containing weight, bias and activation functions, as a final Result of the training. So shouldn't I be able to simply give my raw data as input and obtain the corresponding predicted output. I gave the exact same training set using the indices Matlab chose for training (to cross check), and plotted the predicted output vs actual output, but the result is not at all good. Definitely, not along the lines of R~0.99. Am I doing anything wrong?





      function [y1] = myNeuralNetworkFunction_2(x1)
      %MYNEURALNETWORKFUNCTION neural network simulation function.
      % X = [torque T_exh lambda t_Spark N EGR];
      % Y = [O2R CO2R HC NOX CO lambda_out T_exh2];
      % Generated by Neural Network Toolbox function genFunction, 17-Dec-2018 07:13:04.
      %
      % [y1] = myNeuralNetworkFunction(x1) takes these arguments:
      % x = Qx6 matrix, input #1
      % and returns:
      % y = Qx7 matrix, output #1
      % where Q is the number of samples.

      %#ok<*RPMT0>

      % ===== NEURAL NETWORK CONSTANTS =====

      % Input 1
      x1_step1_xoffset = [-24;235.248;0.75;-20.678;550;0.799];
      x1_step1_gain = [0.00353982300884956;0.00284355877067267;6.26959247648903;0.0275865874012055;0.000366568914956012;0.0533831576137729];
      x1_step1_ymin = -1;

      % Layer 1
      b1 = [1.3808996210168685;-2.0990163849711894;0.9651733083552595;0.27000953282929346;-1.6781835509820286;-1.5110463684800366;-3.6257438832309905;2.1569498669085361;1.9204156230460485;-0.17704342477904209];
      IW1_1 = [-0.032892214008082517 -0.55848270745152429 -0.0063993424771670616 -0.56161004933654057 2.7161844536020197 0.46415317073346513;-0.21395624254052176 -3.1570133640176681 0.71972178875396853 -1.9132557838515238 1.3365248285282931 -3.022721627052706;-1.1026780445896862 0.2324603066452392 0.14552308208231421 0.79194435276493658 -0.66254679969168417 0.070353201192052434;-0.017994515838487352 -0.097682677816992206 0.68844109281256027 -0.001684535122025588 0.013605622123872989 0.05810686279306107;0.5853667840629273 -2.9560683084876329 0.56713425120259764 -2.1854386350040116 1.2930115031659106 -2.7133159265497957;0.64316656469750333 -0.63667017646313084 0.50060179040086761 -0.86827897068177973 2.695456517458648 0.16822164719859456;-0.44666821007466739 4.0993786464616679 -0.89370838440321498 3.0445073606237933 -3.3015566360833453 -4.492874075961689;1.8337574137485424 2.6946232855369989 1.1140472073136622 1.6167763205944321 1.8573696127039145 -0.81922672766933646;-0.12561950922781362 3.0711045035224349 -0.6535751823440773 2.0590707752473199 -1.3267693770634292 2.8782780742777794;-0.013438026967107483 -0.025741311825949621 0.45460734966889638 0.045052447491038108 -0.21794568374100454 0.10667240367191703];

      % Layer 2
      b2 = [-0.96846557414356171;-0.2454718918618051;-0.7331628718025488;-1.0225195290982099;0.50307202195645395;-0.49497234988401961;-0.21817117469133171];
      LW2_1 = [-0.97716474643411022 -0.23883775971686808 0.99238069915206006 0.4147649511973347 0.48504023209224734 -0.071372217431684551 0.054177719330469304 -0.25963474838320832 0.27368380212104881 0.063159321947246799;-0.15570858147605909 -0.18816739764334323 -0.3793600124951475 2.3851961990944681 0.38355142531334563 -0.75308427071748985 -0.1280128732536128 -1.361052031781103 0.6021878865831336 -0.24725687748503239;0.076251356114485525 -0.10178293627600112 0.10151304376762409 -0.46453434441403058 0.12114876632815359 0.062856969143306296 -0.0019628163322658364 -0.067809039768745916 0.071731544062023825 0.65700427778446913;0.17887084584125315 0.29122649575978238 0.37255802759192702 1.3684190468992126 0.60936238465090853 0.21955911453674043 0.28477957899364675 -0.051456306721251184 0.6519451272106177 -0.64479205028051967;0.25743349663436799 2.0668075180209979 0.59610776847961111 -3.2609682919282603 1.8824214917530881 0.33542869933904396 0.03604272669356564 -0.013842766338427388 3.8534510207741826 2.2266745660915586;-0.16136175574939746 0.10407287099228898 -0.13902245286490234 0.87616472446622717 -0.027079111747601223 0.024812287505204988 -0.030101536834009103 0.043168268669541855 0.12172932035587079 -0.27074383434206573;0.18714562505165402 0.35267726325386606 -0.029241400610813449 0.53053853235049087 0.58880054832728757 0.047959541165126809 0.16152268183097709 0.23419456403348898 0.83166785128608967 -0.66765237856750781];

      % Output 1
      y1_step1_ymin = -1;
      y1_step1_gain = [0.114200879346771;0.145581598485951;0.000139011547272197;0.000456244862967996;2.05816254143146e-05;5.27704485488127;0.00284355877067267];
      y1_step1_xoffset = [-0.045;1.122;2.706;17.108;493.726;0.75;235.248];

      % ===== SIMULATION ========

      % Dimensions
      Q = size(x1,1); % samples

      % Input 1
      x1 = x1';
      xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);

      % Layer 1
      a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);

      % Layer 2
      a2 = repmat(b2,1,Q) + LW2_1*a1;

      % Output 1
      y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
      y1 = y1';
      end

      % ===== MODULE FUNCTIONS ========

      % Map Minimum and Maximum Input Processing Function
      function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin)
      y = bsxfun(@minus,x,settings_xoffset);
      y = bsxfun(@times,y,settings_gain);
      y = bsxfun(@plus,y,settings_ymin);
      end

      % Sigmoid Symmetric Transfer Function
      function a = tansig_apply(n)
      a = 2 ./ (1 + exp(-2*n)) - 1;
      end

      % Map Minimum and Maximum Output Reverse-Processing Function
      function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin)
      x = bsxfun(@minus,y,settings_ymin);
      x = bsxfun(@rdivide,x,settings_gain);
      x = bsxfun(@plus,x,settings_xoffset);
      end





      The above one is the automatically generated code. The plot which I generated to cross-check the first variable is below:-






      % X and Y are input and output - same as above
      X_train = X(results.info1.train.indices,:);
      y_train = Y(results.info1.train.indices,:);
      out_train = myNeuralNetworkFunction_2(X_train);
      scatter(y_train(:,1),out_train(:,1))





      enter image description here










      share|improve this question














      I have trained my Neural network model using MATLAB NN Toolbox. My network has multiple inputs and multiple outputs, 6 and 7 respectively, to be precise. I would like to clarify few questions based on it:-




      • The final regression plot showed at the end of the training shows a very good accuracy, R~0.99. However, since I have multiple outputs, I am confused as to which scatter plot does it represent? Shouldn't we have 7 target vs predicted plots for each of the output variable?


      enter image description here




      • According to my knowledge, R^2 is a better method of commenting upon the accuracy of the model, whereas MATLAB reports R in its plot. Do I treat that R as R^2 or should I square the reported R value to obtain R^2.

      • I have generated the Matlab Script containing weight, bias and activation functions, as a final Result of the training. So shouldn't I be able to simply give my raw data as input and obtain the corresponding predicted output. I gave the exact same training set using the indices Matlab chose for training (to cross check), and plotted the predicted output vs actual output, but the result is not at all good. Definitely, not along the lines of R~0.99. Am I doing anything wrong?





      function [y1] = myNeuralNetworkFunction_2(x1)
      %MYNEURALNETWORKFUNCTION neural network simulation function.
      % X = [torque T_exh lambda t_Spark N EGR];
      % Y = [O2R CO2R HC NOX CO lambda_out T_exh2];
      % Generated by Neural Network Toolbox function genFunction, 17-Dec-2018 07:13:04.
      %
      % [y1] = myNeuralNetworkFunction(x1) takes these arguments:
      % x = Qx6 matrix, input #1
      % and returns:
      % y = Qx7 matrix, output #1
      % where Q is the number of samples.

      %#ok<*RPMT0>

      % ===== NEURAL NETWORK CONSTANTS =====

      % Input 1
      x1_step1_xoffset = [-24;235.248;0.75;-20.678;550;0.799];
      x1_step1_gain = [0.00353982300884956;0.00284355877067267;6.26959247648903;0.0275865874012055;0.000366568914956012;0.0533831576137729];
      x1_step1_ymin = -1;

      % Layer 1
      b1 = [1.3808996210168685;-2.0990163849711894;0.9651733083552595;0.27000953282929346;-1.6781835509820286;-1.5110463684800366;-3.6257438832309905;2.1569498669085361;1.9204156230460485;-0.17704342477904209];
      IW1_1 = [-0.032892214008082517 -0.55848270745152429 -0.0063993424771670616 -0.56161004933654057 2.7161844536020197 0.46415317073346513;-0.21395624254052176 -3.1570133640176681 0.71972178875396853 -1.9132557838515238 1.3365248285282931 -3.022721627052706;-1.1026780445896862 0.2324603066452392 0.14552308208231421 0.79194435276493658 -0.66254679969168417 0.070353201192052434;-0.017994515838487352 -0.097682677816992206 0.68844109281256027 -0.001684535122025588 0.013605622123872989 0.05810686279306107;0.5853667840629273 -2.9560683084876329 0.56713425120259764 -2.1854386350040116 1.2930115031659106 -2.7133159265497957;0.64316656469750333 -0.63667017646313084 0.50060179040086761 -0.86827897068177973 2.695456517458648 0.16822164719859456;-0.44666821007466739 4.0993786464616679 -0.89370838440321498 3.0445073606237933 -3.3015566360833453 -4.492874075961689;1.8337574137485424 2.6946232855369989 1.1140472073136622 1.6167763205944321 1.8573696127039145 -0.81922672766933646;-0.12561950922781362 3.0711045035224349 -0.6535751823440773 2.0590707752473199 -1.3267693770634292 2.8782780742777794;-0.013438026967107483 -0.025741311825949621 0.45460734966889638 0.045052447491038108 -0.21794568374100454 0.10667240367191703];

      % Layer 2
      b2 = [-0.96846557414356171;-0.2454718918618051;-0.7331628718025488;-1.0225195290982099;0.50307202195645395;-0.49497234988401961;-0.21817117469133171];
      LW2_1 = [-0.97716474643411022 -0.23883775971686808 0.99238069915206006 0.4147649511973347 0.48504023209224734 -0.071372217431684551 0.054177719330469304 -0.25963474838320832 0.27368380212104881 0.063159321947246799;-0.15570858147605909 -0.18816739764334323 -0.3793600124951475 2.3851961990944681 0.38355142531334563 -0.75308427071748985 -0.1280128732536128 -1.361052031781103 0.6021878865831336 -0.24725687748503239;0.076251356114485525 -0.10178293627600112 0.10151304376762409 -0.46453434441403058 0.12114876632815359 0.062856969143306296 -0.0019628163322658364 -0.067809039768745916 0.071731544062023825 0.65700427778446913;0.17887084584125315 0.29122649575978238 0.37255802759192702 1.3684190468992126 0.60936238465090853 0.21955911453674043 0.28477957899364675 -0.051456306721251184 0.6519451272106177 -0.64479205028051967;0.25743349663436799 2.0668075180209979 0.59610776847961111 -3.2609682919282603 1.8824214917530881 0.33542869933904396 0.03604272669356564 -0.013842766338427388 3.8534510207741826 2.2266745660915586;-0.16136175574939746 0.10407287099228898 -0.13902245286490234 0.87616472446622717 -0.027079111747601223 0.024812287505204988 -0.030101536834009103 0.043168268669541855 0.12172932035587079 -0.27074383434206573;0.18714562505165402 0.35267726325386606 -0.029241400610813449 0.53053853235049087 0.58880054832728757 0.047959541165126809 0.16152268183097709 0.23419456403348898 0.83166785128608967 -0.66765237856750781];

      % Output 1
      y1_step1_ymin = -1;
      y1_step1_gain = [0.114200879346771;0.145581598485951;0.000139011547272197;0.000456244862967996;2.05816254143146e-05;5.27704485488127;0.00284355877067267];
      y1_step1_xoffset = [-0.045;1.122;2.706;17.108;493.726;0.75;235.248];

      % ===== SIMULATION ========

      % Dimensions
      Q = size(x1,1); % samples

      % Input 1
      x1 = x1';
      xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);

      % Layer 1
      a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);

      % Layer 2
      a2 = repmat(b2,1,Q) + LW2_1*a1;

      % Output 1
      y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
      y1 = y1';
      end

      % ===== MODULE FUNCTIONS ========

      % Map Minimum and Maximum Input Processing Function
      function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin)
      y = bsxfun(@minus,x,settings_xoffset);
      y = bsxfun(@times,y,settings_gain);
      y = bsxfun(@plus,y,settings_ymin);
      end

      % Sigmoid Symmetric Transfer Function
      function a = tansig_apply(n)
      a = 2 ./ (1 + exp(-2*n)) - 1;
      end

      % Map Minimum and Maximum Output Reverse-Processing Function
      function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin)
      x = bsxfun(@minus,y,settings_ymin);
      x = bsxfun(@rdivide,x,settings_gain);
      x = bsxfun(@plus,x,settings_xoffset);
      end





      The above one is the automatically generated code. The plot which I generated to cross-check the first variable is below:-






      % X and Y are input and output - same as above
      X_train = X(results.info1.train.indices,:);
      y_train = Y(results.info1.train.indices,:);
      out_train = myNeuralNetworkFunction_2(X_train);
      scatter(y_train(:,1),out_train(:,1))





      enter image description here






      function [y1] = myNeuralNetworkFunction_2(x1)
      %MYNEURALNETWORKFUNCTION neural network simulation function.
      % X = [torque T_exh lambda t_Spark N EGR];
      % Y = [O2R CO2R HC NOX CO lambda_out T_exh2];
      % Generated by Neural Network Toolbox function genFunction, 17-Dec-2018 07:13:04.
      %
      % [y1] = myNeuralNetworkFunction(x1) takes these arguments:
      % x = Qx6 matrix, input #1
      % and returns:
      % y = Qx7 matrix, output #1
      % where Q is the number of samples.

      %#ok<*RPMT0>

      % ===== NEURAL NETWORK CONSTANTS =====

      % Input 1
      x1_step1_xoffset = [-24;235.248;0.75;-20.678;550;0.799];
      x1_step1_gain = [0.00353982300884956;0.00284355877067267;6.26959247648903;0.0275865874012055;0.000366568914956012;0.0533831576137729];
      x1_step1_ymin = -1;

      % Layer 1
      b1 = [1.3808996210168685;-2.0990163849711894;0.9651733083552595;0.27000953282929346;-1.6781835509820286;-1.5110463684800366;-3.6257438832309905;2.1569498669085361;1.9204156230460485;-0.17704342477904209];
      IW1_1 = [-0.032892214008082517 -0.55848270745152429 -0.0063993424771670616 -0.56161004933654057 2.7161844536020197 0.46415317073346513;-0.21395624254052176 -3.1570133640176681 0.71972178875396853 -1.9132557838515238 1.3365248285282931 -3.022721627052706;-1.1026780445896862 0.2324603066452392 0.14552308208231421 0.79194435276493658 -0.66254679969168417 0.070353201192052434;-0.017994515838487352 -0.097682677816992206 0.68844109281256027 -0.001684535122025588 0.013605622123872989 0.05810686279306107;0.5853667840629273 -2.9560683084876329 0.56713425120259764 -2.1854386350040116 1.2930115031659106 -2.7133159265497957;0.64316656469750333 -0.63667017646313084 0.50060179040086761 -0.86827897068177973 2.695456517458648 0.16822164719859456;-0.44666821007466739 4.0993786464616679 -0.89370838440321498 3.0445073606237933 -3.3015566360833453 -4.492874075961689;1.8337574137485424 2.6946232855369989 1.1140472073136622 1.6167763205944321 1.8573696127039145 -0.81922672766933646;-0.12561950922781362 3.0711045035224349 -0.6535751823440773 2.0590707752473199 -1.3267693770634292 2.8782780742777794;-0.013438026967107483 -0.025741311825949621 0.45460734966889638 0.045052447491038108 -0.21794568374100454 0.10667240367191703];

      % Layer 2
      b2 = [-0.96846557414356171;-0.2454718918618051;-0.7331628718025488;-1.0225195290982099;0.50307202195645395;-0.49497234988401961;-0.21817117469133171];
      LW2_1 = [-0.97716474643411022 -0.23883775971686808 0.99238069915206006 0.4147649511973347 0.48504023209224734 -0.071372217431684551 0.054177719330469304 -0.25963474838320832 0.27368380212104881 0.063159321947246799;-0.15570858147605909 -0.18816739764334323 -0.3793600124951475 2.3851961990944681 0.38355142531334563 -0.75308427071748985 -0.1280128732536128 -1.361052031781103 0.6021878865831336 -0.24725687748503239;0.076251356114485525 -0.10178293627600112 0.10151304376762409 -0.46453434441403058 0.12114876632815359 0.062856969143306296 -0.0019628163322658364 -0.067809039768745916 0.071731544062023825 0.65700427778446913;0.17887084584125315 0.29122649575978238 0.37255802759192702 1.3684190468992126 0.60936238465090853 0.21955911453674043 0.28477957899364675 -0.051456306721251184 0.6519451272106177 -0.64479205028051967;0.25743349663436799 2.0668075180209979 0.59610776847961111 -3.2609682919282603 1.8824214917530881 0.33542869933904396 0.03604272669356564 -0.013842766338427388 3.8534510207741826 2.2266745660915586;-0.16136175574939746 0.10407287099228898 -0.13902245286490234 0.87616472446622717 -0.027079111747601223 0.024812287505204988 -0.030101536834009103 0.043168268669541855 0.12172932035587079 -0.27074383434206573;0.18714562505165402 0.35267726325386606 -0.029241400610813449 0.53053853235049087 0.58880054832728757 0.047959541165126809 0.16152268183097709 0.23419456403348898 0.83166785128608967 -0.66765237856750781];

      % Output 1
      y1_step1_ymin = -1;
      y1_step1_gain = [0.114200879346771;0.145581598485951;0.000139011547272197;0.000456244862967996;2.05816254143146e-05;5.27704485488127;0.00284355877067267];
      y1_step1_xoffset = [-0.045;1.122;2.706;17.108;493.726;0.75;235.248];

      % ===== SIMULATION ========

      % Dimensions
      Q = size(x1,1); % samples

      % Input 1
      x1 = x1';
      xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);

      % Layer 1
      a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);

      % Layer 2
      a2 = repmat(b2,1,Q) + LW2_1*a1;

      % Output 1
      y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
      y1 = y1';
      end

      % ===== MODULE FUNCTIONS ========

      % Map Minimum and Maximum Input Processing Function
      function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin)
      y = bsxfun(@minus,x,settings_xoffset);
      y = bsxfun(@times,y,settings_gain);
      y = bsxfun(@plus,y,settings_ymin);
      end

      % Sigmoid Symmetric Transfer Function
      function a = tansig_apply(n)
      a = 2 ./ (1 + exp(-2*n)) - 1;
      end

      % Map Minimum and Maximum Output Reverse-Processing Function
      function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin)
      x = bsxfun(@minus,y,settings_ymin);
      x = bsxfun(@rdivide,x,settings_gain);
      x = bsxfun(@plus,x,settings_xoffset);
      end





      function [y1] = myNeuralNetworkFunction_2(x1)
      %MYNEURALNETWORKFUNCTION neural network simulation function.
      % X = [torque T_exh lambda t_Spark N EGR];
      % Y = [O2R CO2R HC NOX CO lambda_out T_exh2];
      % Generated by Neural Network Toolbox function genFunction, 17-Dec-2018 07:13:04.
      %
      % [y1] = myNeuralNetworkFunction(x1) takes these arguments:
      % x = Qx6 matrix, input #1
      % and returns:
      % y = Qx7 matrix, output #1
      % where Q is the number of samples.

      %#ok<*RPMT0>

      % ===== NEURAL NETWORK CONSTANTS =====

      % Input 1
      x1_step1_xoffset = [-24;235.248;0.75;-20.678;550;0.799];
      x1_step1_gain = [0.00353982300884956;0.00284355877067267;6.26959247648903;0.0275865874012055;0.000366568914956012;0.0533831576137729];
      x1_step1_ymin = -1;

      % Layer 1
      b1 = [1.3808996210168685;-2.0990163849711894;0.9651733083552595;0.27000953282929346;-1.6781835509820286;-1.5110463684800366;-3.6257438832309905;2.1569498669085361;1.9204156230460485;-0.17704342477904209];
      IW1_1 = [-0.032892214008082517 -0.55848270745152429 -0.0063993424771670616 -0.56161004933654057 2.7161844536020197 0.46415317073346513;-0.21395624254052176 -3.1570133640176681 0.71972178875396853 -1.9132557838515238 1.3365248285282931 -3.022721627052706;-1.1026780445896862 0.2324603066452392 0.14552308208231421 0.79194435276493658 -0.66254679969168417 0.070353201192052434;-0.017994515838487352 -0.097682677816992206 0.68844109281256027 -0.001684535122025588 0.013605622123872989 0.05810686279306107;0.5853667840629273 -2.9560683084876329 0.56713425120259764 -2.1854386350040116 1.2930115031659106 -2.7133159265497957;0.64316656469750333 -0.63667017646313084 0.50060179040086761 -0.86827897068177973 2.695456517458648 0.16822164719859456;-0.44666821007466739 4.0993786464616679 -0.89370838440321498 3.0445073606237933 -3.3015566360833453 -4.492874075961689;1.8337574137485424 2.6946232855369989 1.1140472073136622 1.6167763205944321 1.8573696127039145 -0.81922672766933646;-0.12561950922781362 3.0711045035224349 -0.6535751823440773 2.0590707752473199 -1.3267693770634292 2.8782780742777794;-0.013438026967107483 -0.025741311825949621 0.45460734966889638 0.045052447491038108 -0.21794568374100454 0.10667240367191703];

      % Layer 2
      b2 = [-0.96846557414356171;-0.2454718918618051;-0.7331628718025488;-1.0225195290982099;0.50307202195645395;-0.49497234988401961;-0.21817117469133171];
      LW2_1 = [-0.97716474643411022 -0.23883775971686808 0.99238069915206006 0.4147649511973347 0.48504023209224734 -0.071372217431684551 0.054177719330469304 -0.25963474838320832 0.27368380212104881 0.063159321947246799;-0.15570858147605909 -0.18816739764334323 -0.3793600124951475 2.3851961990944681 0.38355142531334563 -0.75308427071748985 -0.1280128732536128 -1.361052031781103 0.6021878865831336 -0.24725687748503239;0.076251356114485525 -0.10178293627600112 0.10151304376762409 -0.46453434441403058 0.12114876632815359 0.062856969143306296 -0.0019628163322658364 -0.067809039768745916 0.071731544062023825 0.65700427778446913;0.17887084584125315 0.29122649575978238 0.37255802759192702 1.3684190468992126 0.60936238465090853 0.21955911453674043 0.28477957899364675 -0.051456306721251184 0.6519451272106177 -0.64479205028051967;0.25743349663436799 2.0668075180209979 0.59610776847961111 -3.2609682919282603 1.8824214917530881 0.33542869933904396 0.03604272669356564 -0.013842766338427388 3.8534510207741826 2.2266745660915586;-0.16136175574939746 0.10407287099228898 -0.13902245286490234 0.87616472446622717 -0.027079111747601223 0.024812287505204988 -0.030101536834009103 0.043168268669541855 0.12172932035587079 -0.27074383434206573;0.18714562505165402 0.35267726325386606 -0.029241400610813449 0.53053853235049087 0.58880054832728757 0.047959541165126809 0.16152268183097709 0.23419456403348898 0.83166785128608967 -0.66765237856750781];

      % Output 1
      y1_step1_ymin = -1;
      y1_step1_gain = [0.114200879346771;0.145581598485951;0.000139011547272197;0.000456244862967996;2.05816254143146e-05;5.27704485488127;0.00284355877067267];
      y1_step1_xoffset = [-0.045;1.122;2.706;17.108;493.726;0.75;235.248];

      % ===== SIMULATION ========

      % Dimensions
      Q = size(x1,1); % samples

      % Input 1
      x1 = x1';
      xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);

      % Layer 1
      a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);

      % Layer 2
      a2 = repmat(b2,1,Q) + LW2_1*a1;

      % Output 1
      y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
      y1 = y1';
      end

      % ===== MODULE FUNCTIONS ========

      % Map Minimum and Maximum Input Processing Function
      function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin)
      y = bsxfun(@minus,x,settings_xoffset);
      y = bsxfun(@times,y,settings_gain);
      y = bsxfun(@plus,y,settings_ymin);
      end

      % Sigmoid Symmetric Transfer Function
      function a = tansig_apply(n)
      a = 2 ./ (1 + exp(-2*n)) - 1;
      end

      % Map Minimum and Maximum Output Reverse-Processing Function
      function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin)
      x = bsxfun(@minus,y,settings_ymin);
      x = bsxfun(@rdivide,x,settings_gain);
      x = bsxfun(@plus,x,settings_xoffset);
      end





      % X and Y are input and output - same as above
      X_train = X(results.info1.train.indices,:);
      y_train = Y(results.info1.train.indices,:);
      out_train = myNeuralNetworkFunction_2(X_train);
      scatter(y_train(:,1),out_train(:,1))





      % X and Y are input and output - same as above
      X_train = X(results.info1.train.indices,:);
      y_train = Y(results.info1.train.indices,:);
      out_train = myNeuralNetworkFunction_2(X_train);
      scatter(y_train(:,1),out_train(:,1))






      matlab machine-learning neural-network regression






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Dec 18 '18 at 5:45









      ManishManish

      8012




      8012
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53827033%2fhow-to-interprete-the-regression-plot-obtained-at-the-end-of-neural-network-regr%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53827033%2fhow-to-interprete-the-regression-plot-obtained-at-the-end-of-neural-network-regr%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith