How transform this integral to the “Cauchy's integral”
$begingroup$
I would like to know is there any tricks to transform this
$$frac { 1 }{ 2pi } int _{ -pi }^{ pi }{ frac { fleft( t right) }{ { e }^{ -it }-{ e }^{ ix } } dt } $$ integral to the $$frac { 1 }{ 2pi i } int _{ gamma }^{ }{ frac { fleft( t right) }{ t-xi } dt } $$
Thank you in advance.
integration complex-analysis
$endgroup$
add a comment |
$begingroup$
I would like to know is there any tricks to transform this
$$frac { 1 }{ 2pi } int _{ -pi }^{ pi }{ frac { fleft( t right) }{ { e }^{ -it }-{ e }^{ ix } } dt } $$ integral to the $$frac { 1 }{ 2pi i } int _{ gamma }^{ }{ frac { fleft( t right) }{ t-xi } dt } $$
Thank you in advance.
integration complex-analysis
$endgroup$
add a comment |
$begingroup$
I would like to know is there any tricks to transform this
$$frac { 1 }{ 2pi } int _{ -pi }^{ pi }{ frac { fleft( t right) }{ { e }^{ -it }-{ e }^{ ix } } dt } $$ integral to the $$frac { 1 }{ 2pi i } int _{ gamma }^{ }{ frac { fleft( t right) }{ t-xi } dt } $$
Thank you in advance.
integration complex-analysis
$endgroup$
I would like to know is there any tricks to transform this
$$frac { 1 }{ 2pi } int _{ -pi }^{ pi }{ frac { fleft( t right) }{ { e }^{ -it }-{ e }^{ ix } } dt } $$ integral to the $$frac { 1 }{ 2pi i } int _{ gamma }^{ }{ frac { fleft( t right) }{ t-xi } dt } $$
Thank you in advance.
integration complex-analysis
integration complex-analysis
asked Jan 22 at 21:14


haqnaturalhaqnatural
20.8k72457
20.8k72457
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Starting with
$$dfrac{1}{2pi i} int_{gamma}{dfrac{gleft(zright)}{z-xi}dz}$$
make the substitutions
$$xi = e^{-ix}$$
$$g(z) = -e^{-ix}fleft(-ilogleft(zright)-2kpiright)$$
and specify the contour as a path on the unit circle from an angle of $-pi$ to an angle of $pi$
$$z= e^{it} quad -pi le t lt pi$$
$$dz = ie^{it}dt$$
so
$$begin{align*} dfrac{1}{2pi i} int_{gamma}{dfrac{gleft(zright)}{z-xi}dz} &= dfrac{1}{2pi i} int_{gamma}{dfrac{-e^{-ix}fleft(-ilogleft(zright)-2kpiright)}{z-e^{-ix}}dz}\
\
&= dfrac{1}{2pi i} int_{-pi}^{pi}{dfrac{-e^{-ix}fleft(-ilogleft(e^{it}right)-2kpiright)ie^{it}}{e^{it}-e^{-ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(-ilogleft(e^{it}right)-2kpiright)}{e^{-it}-e^{ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(-ileft[ln|1|+i(t+2kpi)right]-2kpiright)}{e^{-it}-e^{ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(tright)}{e^{-it}-e^{ix}}dt}\
end{align*}$$
If you elect to work with the principal branch of the complex logarithm, then you can just set $k=0$ and use $mathrm{Log}()$ instead of $log()$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083704%2fhow-transform-this-integral-to-the-cauchys-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Starting with
$$dfrac{1}{2pi i} int_{gamma}{dfrac{gleft(zright)}{z-xi}dz}$$
make the substitutions
$$xi = e^{-ix}$$
$$g(z) = -e^{-ix}fleft(-ilogleft(zright)-2kpiright)$$
and specify the contour as a path on the unit circle from an angle of $-pi$ to an angle of $pi$
$$z= e^{it} quad -pi le t lt pi$$
$$dz = ie^{it}dt$$
so
$$begin{align*} dfrac{1}{2pi i} int_{gamma}{dfrac{gleft(zright)}{z-xi}dz} &= dfrac{1}{2pi i} int_{gamma}{dfrac{-e^{-ix}fleft(-ilogleft(zright)-2kpiright)}{z-e^{-ix}}dz}\
\
&= dfrac{1}{2pi i} int_{-pi}^{pi}{dfrac{-e^{-ix}fleft(-ilogleft(e^{it}right)-2kpiright)ie^{it}}{e^{it}-e^{-ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(-ilogleft(e^{it}right)-2kpiright)}{e^{-it}-e^{ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(-ileft[ln|1|+i(t+2kpi)right]-2kpiright)}{e^{-it}-e^{ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(tright)}{e^{-it}-e^{ix}}dt}\
end{align*}$$
If you elect to work with the principal branch of the complex logarithm, then you can just set $k=0$ and use $mathrm{Log}()$ instead of $log()$.
$endgroup$
add a comment |
$begingroup$
Starting with
$$dfrac{1}{2pi i} int_{gamma}{dfrac{gleft(zright)}{z-xi}dz}$$
make the substitutions
$$xi = e^{-ix}$$
$$g(z) = -e^{-ix}fleft(-ilogleft(zright)-2kpiright)$$
and specify the contour as a path on the unit circle from an angle of $-pi$ to an angle of $pi$
$$z= e^{it} quad -pi le t lt pi$$
$$dz = ie^{it}dt$$
so
$$begin{align*} dfrac{1}{2pi i} int_{gamma}{dfrac{gleft(zright)}{z-xi}dz} &= dfrac{1}{2pi i} int_{gamma}{dfrac{-e^{-ix}fleft(-ilogleft(zright)-2kpiright)}{z-e^{-ix}}dz}\
\
&= dfrac{1}{2pi i} int_{-pi}^{pi}{dfrac{-e^{-ix}fleft(-ilogleft(e^{it}right)-2kpiright)ie^{it}}{e^{it}-e^{-ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(-ilogleft(e^{it}right)-2kpiright)}{e^{-it}-e^{ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(-ileft[ln|1|+i(t+2kpi)right]-2kpiright)}{e^{-it}-e^{ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(tright)}{e^{-it}-e^{ix}}dt}\
end{align*}$$
If you elect to work with the principal branch of the complex logarithm, then you can just set $k=0$ and use $mathrm{Log}()$ instead of $log()$.
$endgroup$
add a comment |
$begingroup$
Starting with
$$dfrac{1}{2pi i} int_{gamma}{dfrac{gleft(zright)}{z-xi}dz}$$
make the substitutions
$$xi = e^{-ix}$$
$$g(z) = -e^{-ix}fleft(-ilogleft(zright)-2kpiright)$$
and specify the contour as a path on the unit circle from an angle of $-pi$ to an angle of $pi$
$$z= e^{it} quad -pi le t lt pi$$
$$dz = ie^{it}dt$$
so
$$begin{align*} dfrac{1}{2pi i} int_{gamma}{dfrac{gleft(zright)}{z-xi}dz} &= dfrac{1}{2pi i} int_{gamma}{dfrac{-e^{-ix}fleft(-ilogleft(zright)-2kpiright)}{z-e^{-ix}}dz}\
\
&= dfrac{1}{2pi i} int_{-pi}^{pi}{dfrac{-e^{-ix}fleft(-ilogleft(e^{it}right)-2kpiright)ie^{it}}{e^{it}-e^{-ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(-ilogleft(e^{it}right)-2kpiright)}{e^{-it}-e^{ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(-ileft[ln|1|+i(t+2kpi)right]-2kpiright)}{e^{-it}-e^{ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(tright)}{e^{-it}-e^{ix}}dt}\
end{align*}$$
If you elect to work with the principal branch of the complex logarithm, then you can just set $k=0$ and use $mathrm{Log}()$ instead of $log()$.
$endgroup$
Starting with
$$dfrac{1}{2pi i} int_{gamma}{dfrac{gleft(zright)}{z-xi}dz}$$
make the substitutions
$$xi = e^{-ix}$$
$$g(z) = -e^{-ix}fleft(-ilogleft(zright)-2kpiright)$$
and specify the contour as a path on the unit circle from an angle of $-pi$ to an angle of $pi$
$$z= e^{it} quad -pi le t lt pi$$
$$dz = ie^{it}dt$$
so
$$begin{align*} dfrac{1}{2pi i} int_{gamma}{dfrac{gleft(zright)}{z-xi}dz} &= dfrac{1}{2pi i} int_{gamma}{dfrac{-e^{-ix}fleft(-ilogleft(zright)-2kpiright)}{z-e^{-ix}}dz}\
\
&= dfrac{1}{2pi i} int_{-pi}^{pi}{dfrac{-e^{-ix}fleft(-ilogleft(e^{it}right)-2kpiright)ie^{it}}{e^{it}-e^{-ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(-ilogleft(e^{it}right)-2kpiright)}{e^{-it}-e^{ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(-ileft[ln|1|+i(t+2kpi)right]-2kpiright)}{e^{-it}-e^{ix}}dt}\
\
&= dfrac{1}{2pi } int_{-pi}^{pi}{dfrac{fleft(tright)}{e^{-it}-e^{ix}}dt}\
end{align*}$$
If you elect to work with the principal branch of the complex logarithm, then you can just set $k=0$ and use $mathrm{Log}()$ instead of $log()$.
answered Jan 23 at 1:15
Andy WallsAndy Walls
1,754139
1,754139
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083704%2fhow-transform-this-integral-to-the-cauchys-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown