If $A, B$ and $C$ are all non-zero matrices, and $AB = BC$, does it imply $A = C$?
$begingroup$
I don't see how $A = C$ but I can't find an example that proves otherwise.
matrices
$endgroup$
add a comment |
$begingroup$
I don't see how $A = C$ but I can't find an example that proves otherwise.
matrices
$endgroup$
$begingroup$
Hint : do you have heard about matrix reduction ? ! ...
$endgroup$
– DLeMeur
Jan 20 at 22:08
add a comment |
$begingroup$
I don't see how $A = C$ but I can't find an example that proves otherwise.
matrices
$endgroup$
I don't see how $A = C$ but I can't find an example that proves otherwise.
matrices
matrices
edited Jan 20 at 22:48


idriskameni
753321
753321
asked Jan 20 at 22:03


Lim Chee HeanLim Chee Hean
6
6
$begingroup$
Hint : do you have heard about matrix reduction ? ! ...
$endgroup$
– DLeMeur
Jan 20 at 22:08
add a comment |
$begingroup$
Hint : do you have heard about matrix reduction ? ! ...
$endgroup$
– DLeMeur
Jan 20 at 22:08
$begingroup$
Hint : do you have heard about matrix reduction ? ! ...
$endgroup$
– DLeMeur
Jan 20 at 22:08
$begingroup$
Hint : do you have heard about matrix reduction ? ! ...
$endgroup$
– DLeMeur
Jan 20 at 22:08
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$A=begin {pmatrix} 1&0\0&1 end {pmatrix},B=begin {pmatrix} 1&0\0&0 end {pmatrix},C=begin {pmatrix} 1&0\0&0 end {pmatrix}$$
In fact, you should be able to use generic matrices for this. If $B$ is invertible and does not commute with $A$ you can just set $C=B^{-1}AB$ and have an example. We can let
$$B=begin {pmatrix} 1&2\1&3 end {pmatrix},B^{-1}=begin {pmatrix} 3&-2\-1&1 end {pmatrix},A=begin {pmatrix} 1&2\3&4 end {pmatrix},C=begin {pmatrix} -5&-12\4&10 end {pmatrix}$$
$endgroup$
add a comment |
$begingroup$
$$A=begin {pmatrix} 1&1\1&2 end {pmatrix},B=begin {pmatrix} 1&0\1&1 end {pmatrix},C=begin {pmatrix} 2&1\1&1 end {pmatrix}$$
$endgroup$
1
$begingroup$
I appreciate that you've chosen an example where the matrices are invertible
$endgroup$
– Omnomnomnom
Jan 20 at 22:24
add a comment |
$begingroup$
Matrix multiplication is generally not commutative, your proposition is false. When cooking up counter examples, you should look to use matrices with very basic properties. @ross-millikan has provided a good example of this.
It is very useful to consider the Identity matrix, Zero matrix (for other examples) and then matrices consisting of a reordering of the columns of the identity matrix.
Ross' examples can be written as
$$A=I_{2text{x}2}, quad B = C = e_1 e_1^T$$
where $e_i$ represents the $i$th column of the Identity matrix.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081187%2fif-a-b-and-c-are-all-non-zero-matrices-and-ab-bc-does-it-imply-a-c%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$A=begin {pmatrix} 1&0\0&1 end {pmatrix},B=begin {pmatrix} 1&0\0&0 end {pmatrix},C=begin {pmatrix} 1&0\0&0 end {pmatrix}$$
In fact, you should be able to use generic matrices for this. If $B$ is invertible and does not commute with $A$ you can just set $C=B^{-1}AB$ and have an example. We can let
$$B=begin {pmatrix} 1&2\1&3 end {pmatrix},B^{-1}=begin {pmatrix} 3&-2\-1&1 end {pmatrix},A=begin {pmatrix} 1&2\3&4 end {pmatrix},C=begin {pmatrix} -5&-12\4&10 end {pmatrix}$$
$endgroup$
add a comment |
$begingroup$
$$A=begin {pmatrix} 1&0\0&1 end {pmatrix},B=begin {pmatrix} 1&0\0&0 end {pmatrix},C=begin {pmatrix} 1&0\0&0 end {pmatrix}$$
In fact, you should be able to use generic matrices for this. If $B$ is invertible and does not commute with $A$ you can just set $C=B^{-1}AB$ and have an example. We can let
$$B=begin {pmatrix} 1&2\1&3 end {pmatrix},B^{-1}=begin {pmatrix} 3&-2\-1&1 end {pmatrix},A=begin {pmatrix} 1&2\3&4 end {pmatrix},C=begin {pmatrix} -5&-12\4&10 end {pmatrix}$$
$endgroup$
add a comment |
$begingroup$
$$A=begin {pmatrix} 1&0\0&1 end {pmatrix},B=begin {pmatrix} 1&0\0&0 end {pmatrix},C=begin {pmatrix} 1&0\0&0 end {pmatrix}$$
In fact, you should be able to use generic matrices for this. If $B$ is invertible and does not commute with $A$ you can just set $C=B^{-1}AB$ and have an example. We can let
$$B=begin {pmatrix} 1&2\1&3 end {pmatrix},B^{-1}=begin {pmatrix} 3&-2\-1&1 end {pmatrix},A=begin {pmatrix} 1&2\3&4 end {pmatrix},C=begin {pmatrix} -5&-12\4&10 end {pmatrix}$$
$endgroup$
$$A=begin {pmatrix} 1&0\0&1 end {pmatrix},B=begin {pmatrix} 1&0\0&0 end {pmatrix},C=begin {pmatrix} 1&0\0&0 end {pmatrix}$$
In fact, you should be able to use generic matrices for this. If $B$ is invertible and does not commute with $A$ you can just set $C=B^{-1}AB$ and have an example. We can let
$$B=begin {pmatrix} 1&2\1&3 end {pmatrix},B^{-1}=begin {pmatrix} 3&-2\-1&1 end {pmatrix},A=begin {pmatrix} 1&2\3&4 end {pmatrix},C=begin {pmatrix} -5&-12\4&10 end {pmatrix}$$
edited Jan 20 at 23:20
answered Jan 20 at 22:10


Ross MillikanRoss Millikan
298k24200373
298k24200373
add a comment |
add a comment |
$begingroup$
$$A=begin {pmatrix} 1&1\1&2 end {pmatrix},B=begin {pmatrix} 1&0\1&1 end {pmatrix},C=begin {pmatrix} 2&1\1&1 end {pmatrix}$$
$endgroup$
1
$begingroup$
I appreciate that you've chosen an example where the matrices are invertible
$endgroup$
– Omnomnomnom
Jan 20 at 22:24
add a comment |
$begingroup$
$$A=begin {pmatrix} 1&1\1&2 end {pmatrix},B=begin {pmatrix} 1&0\1&1 end {pmatrix},C=begin {pmatrix} 2&1\1&1 end {pmatrix}$$
$endgroup$
1
$begingroup$
I appreciate that you've chosen an example where the matrices are invertible
$endgroup$
– Omnomnomnom
Jan 20 at 22:24
add a comment |
$begingroup$
$$A=begin {pmatrix} 1&1\1&2 end {pmatrix},B=begin {pmatrix} 1&0\1&1 end {pmatrix},C=begin {pmatrix} 2&1\1&1 end {pmatrix}$$
$endgroup$
$$A=begin {pmatrix} 1&1\1&2 end {pmatrix},B=begin {pmatrix} 1&0\1&1 end {pmatrix},C=begin {pmatrix} 2&1\1&1 end {pmatrix}$$
answered Jan 20 at 22:13


idriskameniidriskameni
753321
753321
1
$begingroup$
I appreciate that you've chosen an example where the matrices are invertible
$endgroup$
– Omnomnomnom
Jan 20 at 22:24
add a comment |
1
$begingroup$
I appreciate that you've chosen an example where the matrices are invertible
$endgroup$
– Omnomnomnom
Jan 20 at 22:24
1
1
$begingroup$
I appreciate that you've chosen an example where the matrices are invertible
$endgroup$
– Omnomnomnom
Jan 20 at 22:24
$begingroup$
I appreciate that you've chosen an example where the matrices are invertible
$endgroup$
– Omnomnomnom
Jan 20 at 22:24
add a comment |
$begingroup$
Matrix multiplication is generally not commutative, your proposition is false. When cooking up counter examples, you should look to use matrices with very basic properties. @ross-millikan has provided a good example of this.
It is very useful to consider the Identity matrix, Zero matrix (for other examples) and then matrices consisting of a reordering of the columns of the identity matrix.
Ross' examples can be written as
$$A=I_{2text{x}2}, quad B = C = e_1 e_1^T$$
where $e_i$ represents the $i$th column of the Identity matrix.
$endgroup$
add a comment |
$begingroup$
Matrix multiplication is generally not commutative, your proposition is false. When cooking up counter examples, you should look to use matrices with very basic properties. @ross-millikan has provided a good example of this.
It is very useful to consider the Identity matrix, Zero matrix (for other examples) and then matrices consisting of a reordering of the columns of the identity matrix.
Ross' examples can be written as
$$A=I_{2text{x}2}, quad B = C = e_1 e_1^T$$
where $e_i$ represents the $i$th column of the Identity matrix.
$endgroup$
add a comment |
$begingroup$
Matrix multiplication is generally not commutative, your proposition is false. When cooking up counter examples, you should look to use matrices with very basic properties. @ross-millikan has provided a good example of this.
It is very useful to consider the Identity matrix, Zero matrix (for other examples) and then matrices consisting of a reordering of the columns of the identity matrix.
Ross' examples can be written as
$$A=I_{2text{x}2}, quad B = C = e_1 e_1^T$$
where $e_i$ represents the $i$th column of the Identity matrix.
$endgroup$
Matrix multiplication is generally not commutative, your proposition is false. When cooking up counter examples, you should look to use matrices with very basic properties. @ross-millikan has provided a good example of this.
It is very useful to consider the Identity matrix, Zero matrix (for other examples) and then matrices consisting of a reordering of the columns of the identity matrix.
Ross' examples can be written as
$$A=I_{2text{x}2}, quad B = C = e_1 e_1^T$$
where $e_i$ represents the $i$th column of the Identity matrix.
answered Jan 20 at 22:16
Joel BiffinJoel Biffin
1017
1017
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081187%2fif-a-b-and-c-are-all-non-zero-matrices-and-ab-bc-does-it-imply-a-c%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint : do you have heard about matrix reduction ? ! ...
$endgroup$
– DLeMeur
Jan 20 at 22:08