If $p,q$ are distinct primes and $a$ is not divisible by $p$ or $q$, then $gcd(a, pq)=1$ [duplicate]
$begingroup$
This question already has an answer here:
If $gcd(a,c)=1=gcd(b,c)$, then $gcd(ab,c)=1$
3 answers
If $p,q$ are distinct primes and $a$ is not divisible by $p$ or $q$, then $gcd(a, pq)=1$.
I want to show this using linear combinations, so that a linear combination of $a$, and $py$ will give $1$. So for some $x,y,x',y'$:
$ax+py = 1 = ax'+qy'$, and
$a(x-x')+py-qy'=1-ax'-qy'$.
Not sure where to go from here. Hints appreciated.
elementary-number-theory greatest-common-divisor
$endgroup$
marked as duplicate by Bill Dubuque
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 26 at 18:31
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
If $gcd(a,c)=1=gcd(b,c)$, then $gcd(ab,c)=1$
3 answers
If $p,q$ are distinct primes and $a$ is not divisible by $p$ or $q$, then $gcd(a, pq)=1$.
I want to show this using linear combinations, so that a linear combination of $a$, and $py$ will give $1$. So for some $x,y,x',y'$:
$ax+py = 1 = ax'+qy'$, and
$a(x-x')+py-qy'=1-ax'-qy'$.
Not sure where to go from here. Hints appreciated.
elementary-number-theory greatest-common-divisor
$endgroup$
marked as duplicate by Bill Dubuque
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 26 at 18:31
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
If $gcd(a,c)=1=gcd(b,c)$, then $gcd(ab,c)=1$
3 answers
If $p,q$ are distinct primes and $a$ is not divisible by $p$ or $q$, then $gcd(a, pq)=1$.
I want to show this using linear combinations, so that a linear combination of $a$, and $py$ will give $1$. So for some $x,y,x',y'$:
$ax+py = 1 = ax'+qy'$, and
$a(x-x')+py-qy'=1-ax'-qy'$.
Not sure where to go from here. Hints appreciated.
elementary-number-theory greatest-common-divisor
$endgroup$
This question already has an answer here:
If $gcd(a,c)=1=gcd(b,c)$, then $gcd(ab,c)=1$
3 answers
If $p,q$ are distinct primes and $a$ is not divisible by $p$ or $q$, then $gcd(a, pq)=1$.
I want to show this using linear combinations, so that a linear combination of $a$, and $py$ will give $1$. So for some $x,y,x',y'$:
$ax+py = 1 = ax'+qy'$, and
$a(x-x')+py-qy'=1-ax'-qy'$.
Not sure where to go from here. Hints appreciated.
This question already has an answer here:
If $gcd(a,c)=1=gcd(b,c)$, then $gcd(ab,c)=1$
3 answers
elementary-number-theory greatest-common-divisor
elementary-number-theory greatest-common-divisor
edited Jan 26 at 18:32
Bill Dubuque
212k29195654
212k29195654
asked Jan 26 at 18:14
IntegrateThisIntegrateThis
1,9441818
1,9441818
marked as duplicate by Bill Dubuque
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 26 at 18:31
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Bill Dubuque
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 26 at 18:31
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$ax+py = 1$ and $ ax'+qy'=1$. Rearranging, we have
$py = 1-ax$ and $qy'=1-ax'$. Multiplying, we get $$pyqy'=(1-ax)(1-ax')=1-a (x+x')+a^2xx'.$$
Hence $$pq(yy')+a (x+x'-axx')=1. $$
$endgroup$
add a comment |
$begingroup$
If $a$ is not divisible by $p$ or $q$ then indeed there exist integers $x$, $x'$, $y$, and $y'$ such that
$$ax+py=1qquadtext{ and }qquad ax'+qy'=1.$$
Now isolate $py$ from the first and $qy'$ from the second equation, and multiply the two results together. Can you finish from here?
$endgroup$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$ax+py = 1$ and $ ax'+qy'=1$. Rearranging, we have
$py = 1-ax$ and $qy'=1-ax'$. Multiplying, we get $$pyqy'=(1-ax)(1-ax')=1-a (x+x')+a^2xx'.$$
Hence $$pq(yy')+a (x+x'-axx')=1. $$
$endgroup$
add a comment |
$begingroup$
$ax+py = 1$ and $ ax'+qy'=1$. Rearranging, we have
$py = 1-ax$ and $qy'=1-ax'$. Multiplying, we get $$pyqy'=(1-ax)(1-ax')=1-a (x+x')+a^2xx'.$$
Hence $$pq(yy')+a (x+x'-axx')=1. $$
$endgroup$
add a comment |
$begingroup$
$ax+py = 1$ and $ ax'+qy'=1$. Rearranging, we have
$py = 1-ax$ and $qy'=1-ax'$. Multiplying, we get $$pyqy'=(1-ax)(1-ax')=1-a (x+x')+a^2xx'.$$
Hence $$pq(yy')+a (x+x'-axx')=1. $$
$endgroup$
$ax+py = 1$ and $ ax'+qy'=1$. Rearranging, we have
$py = 1-ax$ and $qy'=1-ax'$. Multiplying, we get $$pyqy'=(1-ax)(1-ax')=1-a (x+x')+a^2xx'.$$
Hence $$pq(yy')+a (x+x'-axx')=1. $$
answered Jan 26 at 18:22
Thomas ShelbyThomas Shelby
4,3042726
4,3042726
add a comment |
add a comment |
$begingroup$
If $a$ is not divisible by $p$ or $q$ then indeed there exist integers $x$, $x'$, $y$, and $y'$ such that
$$ax+py=1qquadtext{ and }qquad ax'+qy'=1.$$
Now isolate $py$ from the first and $qy'$ from the second equation, and multiply the two results together. Can you finish from here?
$endgroup$
add a comment |
$begingroup$
If $a$ is not divisible by $p$ or $q$ then indeed there exist integers $x$, $x'$, $y$, and $y'$ such that
$$ax+py=1qquadtext{ and }qquad ax'+qy'=1.$$
Now isolate $py$ from the first and $qy'$ from the second equation, and multiply the two results together. Can you finish from here?
$endgroup$
add a comment |
$begingroup$
If $a$ is not divisible by $p$ or $q$ then indeed there exist integers $x$, $x'$, $y$, and $y'$ such that
$$ax+py=1qquadtext{ and }qquad ax'+qy'=1.$$
Now isolate $py$ from the first and $qy'$ from the second equation, and multiply the two results together. Can you finish from here?
$endgroup$
If $a$ is not divisible by $p$ or $q$ then indeed there exist integers $x$, $x'$, $y$, and $y'$ such that
$$ax+py=1qquadtext{ and }qquad ax'+qy'=1.$$
Now isolate $py$ from the first and $qy'$ from the second equation, and multiply the two results together. Can you finish from here?
answered Jan 26 at 18:16


ServaesServaes
28.5k34099
28.5k34099
add a comment |
add a comment |