Let C be the graph of hypocycloid $x^{2/3} + y^{2/3} = 1$ oriented clockwise. Parametrize the curve and find...
$begingroup$
Let C be the graph of hypocycloid $x^{2/3} + y^{2/3} = 1$ oriented clockwise. Parametrize the curve and find its arc length.
Attempt:
let $x = sin^{3}t, y = cos^3({t})$
$r(t) = (sin^{3}(t), cos^3(t)), 0 le t le 2pi$
$r'(t) = (3 sin^2(t) cos(t), -3 cos^2(t) sin(t))$
begin{align*}
||r'(t)||
& = sqrt{3 sin^2(t) + cos(t))^2 + (3 cos^2(t) + sin(t)^2} \
& = sqrt{9 sin^4 + cos^2(t)+ (sin^2(t) + cos^2(t)) } \
& = sqrt{9 sin^2(t) + cos^2(t)}
= sqrt{(3 sin(t) cos(t))^2} \
& = 3 sin(t) cos(t)
= frac{3}{2} (2 sin(t) cos(t))
= frac{3}{2} sin(2t).
end{align*}
Now arc length:
$$
L = int_{0}^{2pi} frac{3}{2} sin(2t)dt
= 4 cdot frac{3}{2} cdot frac{1}{2}bigg[-cos(2t) bigg]_{0}^{2pi}
= 3(1+1)
= 6.$$
Is this correct?
multivariable-calculus parametrization
$endgroup$
add a comment |
$begingroup$
Let C be the graph of hypocycloid $x^{2/3} + y^{2/3} = 1$ oriented clockwise. Parametrize the curve and find its arc length.
Attempt:
let $x = sin^{3}t, y = cos^3({t})$
$r(t) = (sin^{3}(t), cos^3(t)), 0 le t le 2pi$
$r'(t) = (3 sin^2(t) cos(t), -3 cos^2(t) sin(t))$
begin{align*}
||r'(t)||
& = sqrt{3 sin^2(t) + cos(t))^2 + (3 cos^2(t) + sin(t)^2} \
& = sqrt{9 sin^4 + cos^2(t)+ (sin^2(t) + cos^2(t)) } \
& = sqrt{9 sin^2(t) + cos^2(t)}
= sqrt{(3 sin(t) cos(t))^2} \
& = 3 sin(t) cos(t)
= frac{3}{2} (2 sin(t) cos(t))
= frac{3}{2} sin(2t).
end{align*}
Now arc length:
$$
L = int_{0}^{2pi} frac{3}{2} sin(2t)dt
= 4 cdot frac{3}{2} cdot frac{1}{2}bigg[-cos(2t) bigg]_{0}^{2pi}
= 3(1+1)
= 6.$$
Is this correct?
multivariable-calculus parametrization
$endgroup$
$begingroup$
I'm not getting how you are calculating $||r'(t)||$
$endgroup$
– user289143
Jan 20 at 23:17
$begingroup$
Starting with $||r'(t)||$ there are typos or mistakes: fix your $+$, some of them should be multiplications. Mismatched parenthesis ...
$endgroup$
– user376343
Jan 20 at 23:18
add a comment |
$begingroup$
Let C be the graph of hypocycloid $x^{2/3} + y^{2/3} = 1$ oriented clockwise. Parametrize the curve and find its arc length.
Attempt:
let $x = sin^{3}t, y = cos^3({t})$
$r(t) = (sin^{3}(t), cos^3(t)), 0 le t le 2pi$
$r'(t) = (3 sin^2(t) cos(t), -3 cos^2(t) sin(t))$
begin{align*}
||r'(t)||
& = sqrt{3 sin^2(t) + cos(t))^2 + (3 cos^2(t) + sin(t)^2} \
& = sqrt{9 sin^4 + cos^2(t)+ (sin^2(t) + cos^2(t)) } \
& = sqrt{9 sin^2(t) + cos^2(t)}
= sqrt{(3 sin(t) cos(t))^2} \
& = 3 sin(t) cos(t)
= frac{3}{2} (2 sin(t) cos(t))
= frac{3}{2} sin(2t).
end{align*}
Now arc length:
$$
L = int_{0}^{2pi} frac{3}{2} sin(2t)dt
= 4 cdot frac{3}{2} cdot frac{1}{2}bigg[-cos(2t) bigg]_{0}^{2pi}
= 3(1+1)
= 6.$$
Is this correct?
multivariable-calculus parametrization
$endgroup$
Let C be the graph of hypocycloid $x^{2/3} + y^{2/3} = 1$ oriented clockwise. Parametrize the curve and find its arc length.
Attempt:
let $x = sin^{3}t, y = cos^3({t})$
$r(t) = (sin^{3}(t), cos^3(t)), 0 le t le 2pi$
$r'(t) = (3 sin^2(t) cos(t), -3 cos^2(t) sin(t))$
begin{align*}
||r'(t)||
& = sqrt{3 sin^2(t) + cos(t))^2 + (3 cos^2(t) + sin(t)^2} \
& = sqrt{9 sin^4 + cos^2(t)+ (sin^2(t) + cos^2(t)) } \
& = sqrt{9 sin^2(t) + cos^2(t)}
= sqrt{(3 sin(t) cos(t))^2} \
& = 3 sin(t) cos(t)
= frac{3}{2} (2 sin(t) cos(t))
= frac{3}{2} sin(2t).
end{align*}
Now arc length:
$$
L = int_{0}^{2pi} frac{3}{2} sin(2t)dt
= 4 cdot frac{3}{2} cdot frac{1}{2}bigg[-cos(2t) bigg]_{0}^{2pi}
= 3(1+1)
= 6.$$
Is this correct?
multivariable-calculus parametrization
multivariable-calculus parametrization
edited Jan 21 at 0:10
Viktor Glombik
1,0031527
1,0031527
asked Jan 20 at 23:11


first n lastnfirst n lastn
61
61
$begingroup$
I'm not getting how you are calculating $||r'(t)||$
$endgroup$
– user289143
Jan 20 at 23:17
$begingroup$
Starting with $||r'(t)||$ there are typos or mistakes: fix your $+$, some of them should be multiplications. Mismatched parenthesis ...
$endgroup$
– user376343
Jan 20 at 23:18
add a comment |
$begingroup$
I'm not getting how you are calculating $||r'(t)||$
$endgroup$
– user289143
Jan 20 at 23:17
$begingroup$
Starting with $||r'(t)||$ there are typos or mistakes: fix your $+$, some of them should be multiplications. Mismatched parenthesis ...
$endgroup$
– user376343
Jan 20 at 23:18
$begingroup$
I'm not getting how you are calculating $||r'(t)||$
$endgroup$
– user289143
Jan 20 at 23:17
$begingroup$
I'm not getting how you are calculating $||r'(t)||$
$endgroup$
– user289143
Jan 20 at 23:17
$begingroup$
Starting with $||r'(t)||$ there are typos or mistakes: fix your $+$, some of them should be multiplications. Mismatched parenthesis ...
$endgroup$
– user376343
Jan 20 at 23:18
$begingroup$
Starting with $||r'(t)||$ there are typos or mistakes: fix your $+$, some of them should be multiplications. Mismatched parenthesis ...
$endgroup$
– user376343
Jan 20 at 23:18
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Now $||r'(t)||=sqrt{(3 sin^2(t) cos (t))^2+(-3 cos^2(t) sin (t))^2}=sqrt{9sin^4(t)cos^2(t)+9cos^4(t)sin^2(t)}=sqrt{9sin^2(t)cos^2(t)(sin^2(t)+cos^2(t)}=sqrt{9sin^2(t)cos^2(t)}=|3sin(t)cos(t)|=|frac{3}{2}sin(2t)|$
$$L=int_0^{2pi}frac{3}{2} |sin(2t)| dt=frac{3}{2}int_0^{2pi}|sin(2t)| dt=frac{3}{2}big(int_0^{frac{pi}{2}}sin(2t) dt-int_{frac{pi}{2}}^{pi}sin(2t) dt+int_pi^{frac{3pi}{2}}sin(2t) dt-int_{frac{3pi}{2}}^{2pi}sin(2t) dtbig)=frac{3}{2}cdot frac{1}{2}[(-cos(2t))_0^{ frac{pi}{2}}+(cos(2t))_{frac{pi}{2}}^{ pi}+(-cos(2t))_{pi}^{frac{ 3pi}{2}}+(cos(2t))_{frac{3pi}{2}}^{2 pi}]=frac{3}{4}(1+1+1+1+1+1+1+1)=6$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081247%2flet-c-be-the-graph-of-hypocycloid-x2-3-y2-3-1-oriented-clockwise-pa%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Now $||r'(t)||=sqrt{(3 sin^2(t) cos (t))^2+(-3 cos^2(t) sin (t))^2}=sqrt{9sin^4(t)cos^2(t)+9cos^4(t)sin^2(t)}=sqrt{9sin^2(t)cos^2(t)(sin^2(t)+cos^2(t)}=sqrt{9sin^2(t)cos^2(t)}=|3sin(t)cos(t)|=|frac{3}{2}sin(2t)|$
$$L=int_0^{2pi}frac{3}{2} |sin(2t)| dt=frac{3}{2}int_0^{2pi}|sin(2t)| dt=frac{3}{2}big(int_0^{frac{pi}{2}}sin(2t) dt-int_{frac{pi}{2}}^{pi}sin(2t) dt+int_pi^{frac{3pi}{2}}sin(2t) dt-int_{frac{3pi}{2}}^{2pi}sin(2t) dtbig)=frac{3}{2}cdot frac{1}{2}[(-cos(2t))_0^{ frac{pi}{2}}+(cos(2t))_{frac{pi}{2}}^{ pi}+(-cos(2t))_{pi}^{frac{ 3pi}{2}}+(cos(2t))_{frac{3pi}{2}}^{2 pi}]=frac{3}{4}(1+1+1+1+1+1+1+1)=6$$
$endgroup$
add a comment |
$begingroup$
Now $||r'(t)||=sqrt{(3 sin^2(t) cos (t))^2+(-3 cos^2(t) sin (t))^2}=sqrt{9sin^4(t)cos^2(t)+9cos^4(t)sin^2(t)}=sqrt{9sin^2(t)cos^2(t)(sin^2(t)+cos^2(t)}=sqrt{9sin^2(t)cos^2(t)}=|3sin(t)cos(t)|=|frac{3}{2}sin(2t)|$
$$L=int_0^{2pi}frac{3}{2} |sin(2t)| dt=frac{3}{2}int_0^{2pi}|sin(2t)| dt=frac{3}{2}big(int_0^{frac{pi}{2}}sin(2t) dt-int_{frac{pi}{2}}^{pi}sin(2t) dt+int_pi^{frac{3pi}{2}}sin(2t) dt-int_{frac{3pi}{2}}^{2pi}sin(2t) dtbig)=frac{3}{2}cdot frac{1}{2}[(-cos(2t))_0^{ frac{pi}{2}}+(cos(2t))_{frac{pi}{2}}^{ pi}+(-cos(2t))_{pi}^{frac{ 3pi}{2}}+(cos(2t))_{frac{3pi}{2}}^{2 pi}]=frac{3}{4}(1+1+1+1+1+1+1+1)=6$$
$endgroup$
add a comment |
$begingroup$
Now $||r'(t)||=sqrt{(3 sin^2(t) cos (t))^2+(-3 cos^2(t) sin (t))^2}=sqrt{9sin^4(t)cos^2(t)+9cos^4(t)sin^2(t)}=sqrt{9sin^2(t)cos^2(t)(sin^2(t)+cos^2(t)}=sqrt{9sin^2(t)cos^2(t)}=|3sin(t)cos(t)|=|frac{3}{2}sin(2t)|$
$$L=int_0^{2pi}frac{3}{2} |sin(2t)| dt=frac{3}{2}int_0^{2pi}|sin(2t)| dt=frac{3}{2}big(int_0^{frac{pi}{2}}sin(2t) dt-int_{frac{pi}{2}}^{pi}sin(2t) dt+int_pi^{frac{3pi}{2}}sin(2t) dt-int_{frac{3pi}{2}}^{2pi}sin(2t) dtbig)=frac{3}{2}cdot frac{1}{2}[(-cos(2t))_0^{ frac{pi}{2}}+(cos(2t))_{frac{pi}{2}}^{ pi}+(-cos(2t))_{pi}^{frac{ 3pi}{2}}+(cos(2t))_{frac{3pi}{2}}^{2 pi}]=frac{3}{4}(1+1+1+1+1+1+1+1)=6$$
$endgroup$
Now $||r'(t)||=sqrt{(3 sin^2(t) cos (t))^2+(-3 cos^2(t) sin (t))^2}=sqrt{9sin^4(t)cos^2(t)+9cos^4(t)sin^2(t)}=sqrt{9sin^2(t)cos^2(t)(sin^2(t)+cos^2(t)}=sqrt{9sin^2(t)cos^2(t)}=|3sin(t)cos(t)|=|frac{3}{2}sin(2t)|$
$$L=int_0^{2pi}frac{3}{2} |sin(2t)| dt=frac{3}{2}int_0^{2pi}|sin(2t)| dt=frac{3}{2}big(int_0^{frac{pi}{2}}sin(2t) dt-int_{frac{pi}{2}}^{pi}sin(2t) dt+int_pi^{frac{3pi}{2}}sin(2t) dt-int_{frac{3pi}{2}}^{2pi}sin(2t) dtbig)=frac{3}{2}cdot frac{1}{2}[(-cos(2t))_0^{ frac{pi}{2}}+(cos(2t))_{frac{pi}{2}}^{ pi}+(-cos(2t))_{pi}^{frac{ 3pi}{2}}+(cos(2t))_{frac{3pi}{2}}^{2 pi}]=frac{3}{4}(1+1+1+1+1+1+1+1)=6$$
answered Jan 20 at 23:41
user289143user289143
1,002313
1,002313
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081247%2flet-c-be-the-graph-of-hypocycloid-x2-3-y2-3-1-oriented-clockwise-pa%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I'm not getting how you are calculating $||r'(t)||$
$endgroup$
– user289143
Jan 20 at 23:17
$begingroup$
Starting with $||r'(t)||$ there are typos or mistakes: fix your $+$, some of them should be multiplications. Mismatched parenthesis ...
$endgroup$
– user376343
Jan 20 at 23:18