Let C be the graph of hypocycloid $x^{2/3} + y^{2/3} = 1$ oriented clockwise. Parametrize the curve and find...












0












$begingroup$


Let C be the graph of hypocycloid $x^{2/3} + y^{2/3} = 1$ oriented clockwise. Parametrize the curve and find its arc length.



Attempt:



let $x = sin^{3}t, y = cos^3({t})$



$r(t) = (sin^{3}(t), cos^3(t)), 0 le t le 2pi$



$r'(t) = (3 sin^2(t) cos(t), -3 cos^2(t) sin(t))$



begin{align*}
||r'(t)||
& = sqrt{3 sin^2(t) + cos(t))^2 + (3 cos^2(t) + sin(t)^2} \
& = sqrt{9 sin^4 + cos^2(t)+ (sin^2(t) + cos^2(t)) } \
& = sqrt{9 sin^2(t) + cos^2(t)}
= sqrt{(3 sin(t) cos(t))^2} \
& = 3 sin(t) cos(t)
= frac{3}{2} (2 sin(t) cos(t))
= frac{3}{2} sin(2t).
end{align*}



Now arc length:



$$
L = int_{0}^{2pi} frac{3}{2} sin(2t)dt
= 4 cdot frac{3}{2} cdot frac{1}{2}bigg[-cos(2t) bigg]_{0}^{2pi}
= 3(1+1)
= 6.$$



Is this correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I'm not getting how you are calculating $||r'(t)||$
    $endgroup$
    – user289143
    Jan 20 at 23:17










  • $begingroup$
    Starting with $||r'(t)||$ there are typos or mistakes: fix your $+$, some of them should be multiplications. Mismatched parenthesis ...
    $endgroup$
    – user376343
    Jan 20 at 23:18


















0












$begingroup$


Let C be the graph of hypocycloid $x^{2/3} + y^{2/3} = 1$ oriented clockwise. Parametrize the curve and find its arc length.



Attempt:



let $x = sin^{3}t, y = cos^3({t})$



$r(t) = (sin^{3}(t), cos^3(t)), 0 le t le 2pi$



$r'(t) = (3 sin^2(t) cos(t), -3 cos^2(t) sin(t))$



begin{align*}
||r'(t)||
& = sqrt{3 sin^2(t) + cos(t))^2 + (3 cos^2(t) + sin(t)^2} \
& = sqrt{9 sin^4 + cos^2(t)+ (sin^2(t) + cos^2(t)) } \
& = sqrt{9 sin^2(t) + cos^2(t)}
= sqrt{(3 sin(t) cos(t))^2} \
& = 3 sin(t) cos(t)
= frac{3}{2} (2 sin(t) cos(t))
= frac{3}{2} sin(2t).
end{align*}



Now arc length:



$$
L = int_{0}^{2pi} frac{3}{2} sin(2t)dt
= 4 cdot frac{3}{2} cdot frac{1}{2}bigg[-cos(2t) bigg]_{0}^{2pi}
= 3(1+1)
= 6.$$



Is this correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I'm not getting how you are calculating $||r'(t)||$
    $endgroup$
    – user289143
    Jan 20 at 23:17










  • $begingroup$
    Starting with $||r'(t)||$ there are typos or mistakes: fix your $+$, some of them should be multiplications. Mismatched parenthesis ...
    $endgroup$
    – user376343
    Jan 20 at 23:18
















0












0








0





$begingroup$


Let C be the graph of hypocycloid $x^{2/3} + y^{2/3} = 1$ oriented clockwise. Parametrize the curve and find its arc length.



Attempt:



let $x = sin^{3}t, y = cos^3({t})$



$r(t) = (sin^{3}(t), cos^3(t)), 0 le t le 2pi$



$r'(t) = (3 sin^2(t) cos(t), -3 cos^2(t) sin(t))$



begin{align*}
||r'(t)||
& = sqrt{3 sin^2(t) + cos(t))^2 + (3 cos^2(t) + sin(t)^2} \
& = sqrt{9 sin^4 + cos^2(t)+ (sin^2(t) + cos^2(t)) } \
& = sqrt{9 sin^2(t) + cos^2(t)}
= sqrt{(3 sin(t) cos(t))^2} \
& = 3 sin(t) cos(t)
= frac{3}{2} (2 sin(t) cos(t))
= frac{3}{2} sin(2t).
end{align*}



Now arc length:



$$
L = int_{0}^{2pi} frac{3}{2} sin(2t)dt
= 4 cdot frac{3}{2} cdot frac{1}{2}bigg[-cos(2t) bigg]_{0}^{2pi}
= 3(1+1)
= 6.$$



Is this correct?










share|cite|improve this question











$endgroup$




Let C be the graph of hypocycloid $x^{2/3} + y^{2/3} = 1$ oriented clockwise. Parametrize the curve and find its arc length.



Attempt:



let $x = sin^{3}t, y = cos^3({t})$



$r(t) = (sin^{3}(t), cos^3(t)), 0 le t le 2pi$



$r'(t) = (3 sin^2(t) cos(t), -3 cos^2(t) sin(t))$



begin{align*}
||r'(t)||
& = sqrt{3 sin^2(t) + cos(t))^2 + (3 cos^2(t) + sin(t)^2} \
& = sqrt{9 sin^4 + cos^2(t)+ (sin^2(t) + cos^2(t)) } \
& = sqrt{9 sin^2(t) + cos^2(t)}
= sqrt{(3 sin(t) cos(t))^2} \
& = 3 sin(t) cos(t)
= frac{3}{2} (2 sin(t) cos(t))
= frac{3}{2} sin(2t).
end{align*}



Now arc length:



$$
L = int_{0}^{2pi} frac{3}{2} sin(2t)dt
= 4 cdot frac{3}{2} cdot frac{1}{2}bigg[-cos(2t) bigg]_{0}^{2pi}
= 3(1+1)
= 6.$$



Is this correct?







multivariable-calculus parametrization






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 21 at 0:10









Viktor Glombik

1,0031527




1,0031527










asked Jan 20 at 23:11









first n lastnfirst n lastn

61




61












  • $begingroup$
    I'm not getting how you are calculating $||r'(t)||$
    $endgroup$
    – user289143
    Jan 20 at 23:17










  • $begingroup$
    Starting with $||r'(t)||$ there are typos or mistakes: fix your $+$, some of them should be multiplications. Mismatched parenthesis ...
    $endgroup$
    – user376343
    Jan 20 at 23:18




















  • $begingroup$
    I'm not getting how you are calculating $||r'(t)||$
    $endgroup$
    – user289143
    Jan 20 at 23:17










  • $begingroup$
    Starting with $||r'(t)||$ there are typos or mistakes: fix your $+$, some of them should be multiplications. Mismatched parenthesis ...
    $endgroup$
    – user376343
    Jan 20 at 23:18


















$begingroup$
I'm not getting how you are calculating $||r'(t)||$
$endgroup$
– user289143
Jan 20 at 23:17




$begingroup$
I'm not getting how you are calculating $||r'(t)||$
$endgroup$
– user289143
Jan 20 at 23:17












$begingroup$
Starting with $||r'(t)||$ there are typos or mistakes: fix your $+$, some of them should be multiplications. Mismatched parenthesis ...
$endgroup$
– user376343
Jan 20 at 23:18






$begingroup$
Starting with $||r'(t)||$ there are typos or mistakes: fix your $+$, some of them should be multiplications. Mismatched parenthesis ...
$endgroup$
– user376343
Jan 20 at 23:18












1 Answer
1






active

oldest

votes


















0












$begingroup$

Now $||r'(t)||=sqrt{(3 sin^2(t) cos (t))^2+(-3 cos^2(t) sin (t))^2}=sqrt{9sin^4(t)cos^2(t)+9cos^4(t)sin^2(t)}=sqrt{9sin^2(t)cos^2(t)(sin^2(t)+cos^2(t)}=sqrt{9sin^2(t)cos^2(t)}=|3sin(t)cos(t)|=|frac{3}{2}sin(2t)|$
$$L=int_0^{2pi}frac{3}{2} |sin(2t)| dt=frac{3}{2}int_0^{2pi}|sin(2t)| dt=frac{3}{2}big(int_0^{frac{pi}{2}}sin(2t) dt-int_{frac{pi}{2}}^{pi}sin(2t) dt+int_pi^{frac{3pi}{2}}sin(2t) dt-int_{frac{3pi}{2}}^{2pi}sin(2t) dtbig)=frac{3}{2}cdot frac{1}{2}[(-cos(2t))_0^{ frac{pi}{2}}+(cos(2t))_{frac{pi}{2}}^{ pi}+(-cos(2t))_{pi}^{frac{ 3pi}{2}}+(cos(2t))_{frac{3pi}{2}}^{2 pi}]=frac{3}{4}(1+1+1+1+1+1+1+1)=6$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081247%2flet-c-be-the-graph-of-hypocycloid-x2-3-y2-3-1-oriented-clockwise-pa%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Now $||r'(t)||=sqrt{(3 sin^2(t) cos (t))^2+(-3 cos^2(t) sin (t))^2}=sqrt{9sin^4(t)cos^2(t)+9cos^4(t)sin^2(t)}=sqrt{9sin^2(t)cos^2(t)(sin^2(t)+cos^2(t)}=sqrt{9sin^2(t)cos^2(t)}=|3sin(t)cos(t)|=|frac{3}{2}sin(2t)|$
    $$L=int_0^{2pi}frac{3}{2} |sin(2t)| dt=frac{3}{2}int_0^{2pi}|sin(2t)| dt=frac{3}{2}big(int_0^{frac{pi}{2}}sin(2t) dt-int_{frac{pi}{2}}^{pi}sin(2t) dt+int_pi^{frac{3pi}{2}}sin(2t) dt-int_{frac{3pi}{2}}^{2pi}sin(2t) dtbig)=frac{3}{2}cdot frac{1}{2}[(-cos(2t))_0^{ frac{pi}{2}}+(cos(2t))_{frac{pi}{2}}^{ pi}+(-cos(2t))_{pi}^{frac{ 3pi}{2}}+(cos(2t))_{frac{3pi}{2}}^{2 pi}]=frac{3}{4}(1+1+1+1+1+1+1+1)=6$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Now $||r'(t)||=sqrt{(3 sin^2(t) cos (t))^2+(-3 cos^2(t) sin (t))^2}=sqrt{9sin^4(t)cos^2(t)+9cos^4(t)sin^2(t)}=sqrt{9sin^2(t)cos^2(t)(sin^2(t)+cos^2(t)}=sqrt{9sin^2(t)cos^2(t)}=|3sin(t)cos(t)|=|frac{3}{2}sin(2t)|$
      $$L=int_0^{2pi}frac{3}{2} |sin(2t)| dt=frac{3}{2}int_0^{2pi}|sin(2t)| dt=frac{3}{2}big(int_0^{frac{pi}{2}}sin(2t) dt-int_{frac{pi}{2}}^{pi}sin(2t) dt+int_pi^{frac{3pi}{2}}sin(2t) dt-int_{frac{3pi}{2}}^{2pi}sin(2t) dtbig)=frac{3}{2}cdot frac{1}{2}[(-cos(2t))_0^{ frac{pi}{2}}+(cos(2t))_{frac{pi}{2}}^{ pi}+(-cos(2t))_{pi}^{frac{ 3pi}{2}}+(cos(2t))_{frac{3pi}{2}}^{2 pi}]=frac{3}{4}(1+1+1+1+1+1+1+1)=6$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Now $||r'(t)||=sqrt{(3 sin^2(t) cos (t))^2+(-3 cos^2(t) sin (t))^2}=sqrt{9sin^4(t)cos^2(t)+9cos^4(t)sin^2(t)}=sqrt{9sin^2(t)cos^2(t)(sin^2(t)+cos^2(t)}=sqrt{9sin^2(t)cos^2(t)}=|3sin(t)cos(t)|=|frac{3}{2}sin(2t)|$
        $$L=int_0^{2pi}frac{3}{2} |sin(2t)| dt=frac{3}{2}int_0^{2pi}|sin(2t)| dt=frac{3}{2}big(int_0^{frac{pi}{2}}sin(2t) dt-int_{frac{pi}{2}}^{pi}sin(2t) dt+int_pi^{frac{3pi}{2}}sin(2t) dt-int_{frac{3pi}{2}}^{2pi}sin(2t) dtbig)=frac{3}{2}cdot frac{1}{2}[(-cos(2t))_0^{ frac{pi}{2}}+(cos(2t))_{frac{pi}{2}}^{ pi}+(-cos(2t))_{pi}^{frac{ 3pi}{2}}+(cos(2t))_{frac{3pi}{2}}^{2 pi}]=frac{3}{4}(1+1+1+1+1+1+1+1)=6$$






        share|cite|improve this answer









        $endgroup$



        Now $||r'(t)||=sqrt{(3 sin^2(t) cos (t))^2+(-3 cos^2(t) sin (t))^2}=sqrt{9sin^4(t)cos^2(t)+9cos^4(t)sin^2(t)}=sqrt{9sin^2(t)cos^2(t)(sin^2(t)+cos^2(t)}=sqrt{9sin^2(t)cos^2(t)}=|3sin(t)cos(t)|=|frac{3}{2}sin(2t)|$
        $$L=int_0^{2pi}frac{3}{2} |sin(2t)| dt=frac{3}{2}int_0^{2pi}|sin(2t)| dt=frac{3}{2}big(int_0^{frac{pi}{2}}sin(2t) dt-int_{frac{pi}{2}}^{pi}sin(2t) dt+int_pi^{frac{3pi}{2}}sin(2t) dt-int_{frac{3pi}{2}}^{2pi}sin(2t) dtbig)=frac{3}{2}cdot frac{1}{2}[(-cos(2t))_0^{ frac{pi}{2}}+(cos(2t))_{frac{pi}{2}}^{ pi}+(-cos(2t))_{pi}^{frac{ 3pi}{2}}+(cos(2t))_{frac{3pi}{2}}^{2 pi}]=frac{3}{4}(1+1+1+1+1+1+1+1)=6$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 20 at 23:41









        user289143user289143

        1,002313




        1,002313






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081247%2flet-c-be-the-graph-of-hypocycloid-x2-3-y2-3-1-oriented-clockwise-pa%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith