Let T be a linear operator on a vector space V over F. Prove that $Ker~ Tsubset Ker~ T^2$ and $Im~ T^2subset...
$begingroup$
Let T be a linear operator on a vector space V over F. Prove that $Ker~ Tsubset Ker~ T^2$ and $Im~ T^2subset Im~ T$
I know the definition of $Ker~ T$ & $Im~ T$. Using those, I am unable to solve the problem. Please help with elementary properties of Linear Transformation.
linear-algebra vector-spaces linear-transformations
$endgroup$
add a comment |
$begingroup$
Let T be a linear operator on a vector space V over F. Prove that $Ker~ Tsubset Ker~ T^2$ and $Im~ T^2subset Im~ T$
I know the definition of $Ker~ T$ & $Im~ T$. Using those, I am unable to solve the problem. Please help with elementary properties of Linear Transformation.
linear-algebra vector-spaces linear-transformations
$endgroup$
add a comment |
$begingroup$
Let T be a linear operator on a vector space V over F. Prove that $Ker~ Tsubset Ker~ T^2$ and $Im~ T^2subset Im~ T$
I know the definition of $Ker~ T$ & $Im~ T$. Using those, I am unable to solve the problem. Please help with elementary properties of Linear Transformation.
linear-algebra vector-spaces linear-transformations
$endgroup$
Let T be a linear operator on a vector space V over F. Prove that $Ker~ Tsubset Ker~ T^2$ and $Im~ T^2subset Im~ T$
I know the definition of $Ker~ T$ & $Im~ T$. Using those, I am unable to solve the problem. Please help with elementary properties of Linear Transformation.
linear-algebra vector-spaces linear-transformations
linear-algebra vector-spaces linear-transformations
asked Nov 30 '16 at 10:19
user1942348user1942348
1,3901934
1,3901934
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For $vin ker(T)$ we have $T(v)=0$ and so espacially $T^2(v)=T(T(v))=T(0)=0$ and therefore $vin ker(T^2)$.
For $vin im(T^2)$ we have a $win V$ with $T^2(w)=v$ and so especially $T(T(w))=v$ which means $v$ is the image of $T(w)$ and so $vin im(T)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2037124%2flet-t-be-a-linear-operator-on-a-vector-space-v-over-f-prove-that-ker-t-subset%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $vin ker(T)$ we have $T(v)=0$ and so espacially $T^2(v)=T(T(v))=T(0)=0$ and therefore $vin ker(T^2)$.
For $vin im(T^2)$ we have a $win V$ with $T^2(w)=v$ and so especially $T(T(w))=v$ which means $v$ is the image of $T(w)$ and so $vin im(T)$.
$endgroup$
add a comment |
$begingroup$
For $vin ker(T)$ we have $T(v)=0$ and so espacially $T^2(v)=T(T(v))=T(0)=0$ and therefore $vin ker(T^2)$.
For $vin im(T^2)$ we have a $win V$ with $T^2(w)=v$ and so especially $T(T(w))=v$ which means $v$ is the image of $T(w)$ and so $vin im(T)$.
$endgroup$
add a comment |
$begingroup$
For $vin ker(T)$ we have $T(v)=0$ and so espacially $T^2(v)=T(T(v))=T(0)=0$ and therefore $vin ker(T^2)$.
For $vin im(T^2)$ we have a $win V$ with $T^2(w)=v$ and so especially $T(T(w))=v$ which means $v$ is the image of $T(w)$ and so $vin im(T)$.
$endgroup$
For $vin ker(T)$ we have $T(v)=0$ and so espacially $T^2(v)=T(T(v))=T(0)=0$ and therefore $vin ker(T^2)$.
For $vin im(T^2)$ we have a $win V$ with $T^2(w)=v$ and so especially $T(T(w))=v$ which means $v$ is the image of $T(w)$ and so $vin im(T)$.
answered Nov 30 '16 at 10:24
user302982
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2037124%2flet-t-be-a-linear-operator-on-a-vector-space-v-over-f-prove-that-ker-t-subset%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown