Make a prediction on the selected rows in the HTML table using the Django techniques
From an HTML Data table as the one below, I would like for each row selected via a checkbox make a prediction using SVM classifier.
Before, I used the same classifier to predict all the dataset containing in CSV file. Now, I want to make the same prediction on only selected rows in the HTML table.
Below is my SVM code to make the prediction.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.svm import SVC
from sklearn.metrics import roc_curve, auc
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn import metrics
#Loading dataset
train=pd.read_csv('Data.csv')
features_col=['Changed_file','Num_commits_before_Closed','Num_lines_added','Num_lines_deleted']
X=train[features_col].dropna()
y=train.classes
test_size=0.4 #could also specify train_size=0.7 instead
random_state=0
#train_test_split convenience function
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=random_state,test_size=test_size)
clf = SVC(probability=True, random_state=5)
clf=clf.fit(X_train,y_train)
y_pred=clf.predict(X_test)
#Confusion matrix
print(confusion_matrix(y_test,y_pred))
#Print the classification report
from sklearn.metrics import classification_report
print (classification_report(y_test,y_pred))
python html django scikit-learn
add a comment |
From an HTML Data table as the one below, I would like for each row selected via a checkbox make a prediction using SVM classifier.
Before, I used the same classifier to predict all the dataset containing in CSV file. Now, I want to make the same prediction on only selected rows in the HTML table.
Below is my SVM code to make the prediction.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.svm import SVC
from sklearn.metrics import roc_curve, auc
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn import metrics
#Loading dataset
train=pd.read_csv('Data.csv')
features_col=['Changed_file','Num_commits_before_Closed','Num_lines_added','Num_lines_deleted']
X=train[features_col].dropna()
y=train.classes
test_size=0.4 #could also specify train_size=0.7 instead
random_state=0
#train_test_split convenience function
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=random_state,test_size=test_size)
clf = SVC(probability=True, random_state=5)
clf=clf.fit(X_train,y_train)
y_pred=clf.predict(X_test)
#Confusion matrix
print(confusion_matrix(y_test,y_pred))
#Print the classification report
from sklearn.metrics import classification_report
print (classification_report(y_test,y_pred))
python html django scikit-learn
add a comment |
From an HTML Data table as the one below, I would like for each row selected via a checkbox make a prediction using SVM classifier.
Before, I used the same classifier to predict all the dataset containing in CSV file. Now, I want to make the same prediction on only selected rows in the HTML table.
Below is my SVM code to make the prediction.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.svm import SVC
from sklearn.metrics import roc_curve, auc
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn import metrics
#Loading dataset
train=pd.read_csv('Data.csv')
features_col=['Changed_file','Num_commits_before_Closed','Num_lines_added','Num_lines_deleted']
X=train[features_col].dropna()
y=train.classes
test_size=0.4 #could also specify train_size=0.7 instead
random_state=0
#train_test_split convenience function
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=random_state,test_size=test_size)
clf = SVC(probability=True, random_state=5)
clf=clf.fit(X_train,y_train)
y_pred=clf.predict(X_test)
#Confusion matrix
print(confusion_matrix(y_test,y_pred))
#Print the classification report
from sklearn.metrics import classification_report
print (classification_report(y_test,y_pred))
python html django scikit-learn
From an HTML Data table as the one below, I would like for each row selected via a checkbox make a prediction using SVM classifier.
Before, I used the same classifier to predict all the dataset containing in CSV file. Now, I want to make the same prediction on only selected rows in the HTML table.
Below is my SVM code to make the prediction.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.svm import SVC
from sklearn.metrics import roc_curve, auc
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn import metrics
#Loading dataset
train=pd.read_csv('Data.csv')
features_col=['Changed_file','Num_commits_before_Closed','Num_lines_added','Num_lines_deleted']
X=train[features_col].dropna()
y=train.classes
test_size=0.4 #could also specify train_size=0.7 instead
random_state=0
#train_test_split convenience function
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=random_state,test_size=test_size)
clf = SVC(probability=True, random_state=5)
clf=clf.fit(X_train,y_train)
y_pred=clf.predict(X_test)
#Confusion matrix
print(confusion_matrix(y_test,y_pred))
#Print the classification report
from sklearn.metrics import classification_report
print (classification_report(y_test,y_pred))
python html django scikit-learn
python html django scikit-learn
edited Jan 1 at 6:27


Rohan Nadagouda
264314
264314
asked Nov 29 '18 at 9:14


Abdillah MohamedAbdillah Mohamed
917
917
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53535415%2fmake-a-prediction-on-the-selected-rows-in-the-html-table-using-the-django-techni%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53535415%2fmake-a-prediction-on-the-selected-rows-in-the-html-table-using-the-django-techni%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown