Integration with substitution to cylindrical coordinate
$begingroup$
Solve the integral
$$
\A:= int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}{x^2over a^2}+{y^2over b^2}+{z^2over c^2}dxdydz
$$
In my solution I have substituted to cylindrical coordinates ($x=roperatorname{cos} t,y=roperatorname{sin} t,z=h$) with the ranges $-1leq hleq 1$ and $0leq tleq 2pi$. And when I get fixed $h$ and $t$, then $r$ "moves" from $0$ until it meets a new elipse which determinated by $a'={{hover c}cdot a}, b'={{hover c}cdot b}$. So I need to find the meeting point of $r$ with the new elipse $1={x^2over a'^2}+{y^2over b'^2}=({r cos tover ah})^2+({rsin tover bh})^2$. Hence, if I sign $lambda:=+{abhover sqrt{a^2sin^2 t+b^2cos^2 t}}$, then the required range of $r$ is from $0$ to $lambda$. Hence, ($J=r$),
$$
\ A=int_{-1}^1int_0^{2pi}int_0^lambda r({r^2cos^2 tover a^2} +{r^2sin^2 tover b^2}+{h^2over c^2})drdtdh
\ =...=int_{-1}^1int_0^{2pi}(lambda^4({cos^2 tover 4a^2}+{sin^2 tover 4 b^2})+lambda^2{h^2over c^2})dtdh
\=...=int_{-1}^1int_0^{2pi}({a^6b^6c^2h^8over 4(a^2sin^2 t+b^2 cos^2 t)^3}+{a^4b^4h^6over c^2(a^2sin^2 t+b^2cos^2 t)^2})dtdh
$$
Is this integral doable or I didn't do this exercise right? Thianks
integration multivariable-calculus cylindrical-coordinates
$endgroup$
add a comment |
$begingroup$
Solve the integral
$$
\A:= int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}{x^2over a^2}+{y^2over b^2}+{z^2over c^2}dxdydz
$$
In my solution I have substituted to cylindrical coordinates ($x=roperatorname{cos} t,y=roperatorname{sin} t,z=h$) with the ranges $-1leq hleq 1$ and $0leq tleq 2pi$. And when I get fixed $h$ and $t$, then $r$ "moves" from $0$ until it meets a new elipse which determinated by $a'={{hover c}cdot a}, b'={{hover c}cdot b}$. So I need to find the meeting point of $r$ with the new elipse $1={x^2over a'^2}+{y^2over b'^2}=({r cos tover ah})^2+({rsin tover bh})^2$. Hence, if I sign $lambda:=+{abhover sqrt{a^2sin^2 t+b^2cos^2 t}}$, then the required range of $r$ is from $0$ to $lambda$. Hence, ($J=r$),
$$
\ A=int_{-1}^1int_0^{2pi}int_0^lambda r({r^2cos^2 tover a^2} +{r^2sin^2 tover b^2}+{h^2over c^2})drdtdh
\ =...=int_{-1}^1int_0^{2pi}(lambda^4({cos^2 tover 4a^2}+{sin^2 tover 4 b^2})+lambda^2{h^2over c^2})dtdh
\=...=int_{-1}^1int_0^{2pi}({a^6b^6c^2h^8over 4(a^2sin^2 t+b^2 cos^2 t)^3}+{a^4b^4h^6over c^2(a^2sin^2 t+b^2cos^2 t)^2})dtdh
$$
Is this integral doable or I didn't do this exercise right? Thianks
integration multivariable-calculus cylindrical-coordinates
$endgroup$
2
$begingroup$
Where is the variable $h$ coming from? Also if you put a backslash before $sin$ and $cos$, they turn into $sin{t}$ and $cos{t}$.
$endgroup$
– Calvin Godfrey
Jan 7 at 17:03
$begingroup$
@CalvinGodfrey $h$ equals $z$, I've fixed it.
$endgroup$
– J. Doe
Jan 7 at 17:04
2
$begingroup$
Change first to $u=x/a$, $v=y/b$, $w=z/c$ and then to spherical coordinates.
$endgroup$
– A.Γ.
Jan 7 at 17:06
add a comment |
$begingroup$
Solve the integral
$$
\A:= int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}{x^2over a^2}+{y^2over b^2}+{z^2over c^2}dxdydz
$$
In my solution I have substituted to cylindrical coordinates ($x=roperatorname{cos} t,y=roperatorname{sin} t,z=h$) with the ranges $-1leq hleq 1$ and $0leq tleq 2pi$. And when I get fixed $h$ and $t$, then $r$ "moves" from $0$ until it meets a new elipse which determinated by $a'={{hover c}cdot a}, b'={{hover c}cdot b}$. So I need to find the meeting point of $r$ with the new elipse $1={x^2over a'^2}+{y^2over b'^2}=({r cos tover ah})^2+({rsin tover bh})^2$. Hence, if I sign $lambda:=+{abhover sqrt{a^2sin^2 t+b^2cos^2 t}}$, then the required range of $r$ is from $0$ to $lambda$. Hence, ($J=r$),
$$
\ A=int_{-1}^1int_0^{2pi}int_0^lambda r({r^2cos^2 tover a^2} +{r^2sin^2 tover b^2}+{h^2over c^2})drdtdh
\ =...=int_{-1}^1int_0^{2pi}(lambda^4({cos^2 tover 4a^2}+{sin^2 tover 4 b^2})+lambda^2{h^2over c^2})dtdh
\=...=int_{-1}^1int_0^{2pi}({a^6b^6c^2h^8over 4(a^2sin^2 t+b^2 cos^2 t)^3}+{a^4b^4h^6over c^2(a^2sin^2 t+b^2cos^2 t)^2})dtdh
$$
Is this integral doable or I didn't do this exercise right? Thianks
integration multivariable-calculus cylindrical-coordinates
$endgroup$
Solve the integral
$$
\A:= int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}{x^2over a^2}+{y^2over b^2}+{z^2over c^2}dxdydz
$$
In my solution I have substituted to cylindrical coordinates ($x=roperatorname{cos} t,y=roperatorname{sin} t,z=h$) with the ranges $-1leq hleq 1$ and $0leq tleq 2pi$. And when I get fixed $h$ and $t$, then $r$ "moves" from $0$ until it meets a new elipse which determinated by $a'={{hover c}cdot a}, b'={{hover c}cdot b}$. So I need to find the meeting point of $r$ with the new elipse $1={x^2over a'^2}+{y^2over b'^2}=({r cos tover ah})^2+({rsin tover bh})^2$. Hence, if I sign $lambda:=+{abhover sqrt{a^2sin^2 t+b^2cos^2 t}}$, then the required range of $r$ is from $0$ to $lambda$. Hence, ($J=r$),
$$
\ A=int_{-1}^1int_0^{2pi}int_0^lambda r({r^2cos^2 tover a^2} +{r^2sin^2 tover b^2}+{h^2over c^2})drdtdh
\ =...=int_{-1}^1int_0^{2pi}(lambda^4({cos^2 tover 4a^2}+{sin^2 tover 4 b^2})+lambda^2{h^2over c^2})dtdh
\=...=int_{-1}^1int_0^{2pi}({a^6b^6c^2h^8over 4(a^2sin^2 t+b^2 cos^2 t)^3}+{a^4b^4h^6over c^2(a^2sin^2 t+b^2cos^2 t)^2})dtdh
$$
Is this integral doable or I didn't do this exercise right? Thianks
integration multivariable-calculus cylindrical-coordinates
integration multivariable-calculus cylindrical-coordinates
edited Jan 7 at 17:04
J. Doe
asked Jan 7 at 16:59
J. DoeJ. Doe
14110
14110
2
$begingroup$
Where is the variable $h$ coming from? Also if you put a backslash before $sin$ and $cos$, they turn into $sin{t}$ and $cos{t}$.
$endgroup$
– Calvin Godfrey
Jan 7 at 17:03
$begingroup$
@CalvinGodfrey $h$ equals $z$, I've fixed it.
$endgroup$
– J. Doe
Jan 7 at 17:04
2
$begingroup$
Change first to $u=x/a$, $v=y/b$, $w=z/c$ and then to spherical coordinates.
$endgroup$
– A.Γ.
Jan 7 at 17:06
add a comment |
2
$begingroup$
Where is the variable $h$ coming from? Also if you put a backslash before $sin$ and $cos$, they turn into $sin{t}$ and $cos{t}$.
$endgroup$
– Calvin Godfrey
Jan 7 at 17:03
$begingroup$
@CalvinGodfrey $h$ equals $z$, I've fixed it.
$endgroup$
– J. Doe
Jan 7 at 17:04
2
$begingroup$
Change first to $u=x/a$, $v=y/b$, $w=z/c$ and then to spherical coordinates.
$endgroup$
– A.Γ.
Jan 7 at 17:06
2
2
$begingroup$
Where is the variable $h$ coming from? Also if you put a backslash before $sin$ and $cos$, they turn into $sin{t}$ and $cos{t}$.
$endgroup$
– Calvin Godfrey
Jan 7 at 17:03
$begingroup$
Where is the variable $h$ coming from? Also if you put a backslash before $sin$ and $cos$, they turn into $sin{t}$ and $cos{t}$.
$endgroup$
– Calvin Godfrey
Jan 7 at 17:03
$begingroup$
@CalvinGodfrey $h$ equals $z$, I've fixed it.
$endgroup$
– J. Doe
Jan 7 at 17:04
$begingroup$
@CalvinGodfrey $h$ equals $z$, I've fixed it.
$endgroup$
– J. Doe
Jan 7 at 17:04
2
2
$begingroup$
Change first to $u=x/a$, $v=y/b$, $w=z/c$ and then to spherical coordinates.
$endgroup$
– A.Γ.
Jan 7 at 17:06
$begingroup$
Change first to $u=x/a$, $v=y/b$, $w=z/c$ and then to spherical coordinates.
$endgroup$
– A.Γ.
Jan 7 at 17:06
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint for a simpler way. Let $X=x/a$, $Y=y/b$ and $Z=z/c$, then
$$begin{align}int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}&left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)dxdydz\
&=
abcint_{{X^2}+{Y^2}+{Z^2}leq 1}left({X^2}+{Y^2}+{Z^2}right)dXdYdZ\
&=abcint_{r=0}^1r^2 (4pi r^2) dr
end{align}$$
where in the last step we used the spherical coordinates.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065223%2fintegration-with-substitution-to-cylindrical-coordinate%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint for a simpler way. Let $X=x/a$, $Y=y/b$ and $Z=z/c$, then
$$begin{align}int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}&left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)dxdydz\
&=
abcint_{{X^2}+{Y^2}+{Z^2}leq 1}left({X^2}+{Y^2}+{Z^2}right)dXdYdZ\
&=abcint_{r=0}^1r^2 (4pi r^2) dr
end{align}$$
where in the last step we used the spherical coordinates.
$endgroup$
add a comment |
$begingroup$
Hint for a simpler way. Let $X=x/a$, $Y=y/b$ and $Z=z/c$, then
$$begin{align}int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}&left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)dxdydz\
&=
abcint_{{X^2}+{Y^2}+{Z^2}leq 1}left({X^2}+{Y^2}+{Z^2}right)dXdYdZ\
&=abcint_{r=0}^1r^2 (4pi r^2) dr
end{align}$$
where in the last step we used the spherical coordinates.
$endgroup$
add a comment |
$begingroup$
Hint for a simpler way. Let $X=x/a$, $Y=y/b$ and $Z=z/c$, then
$$begin{align}int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}&left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)dxdydz\
&=
abcint_{{X^2}+{Y^2}+{Z^2}leq 1}left({X^2}+{Y^2}+{Z^2}right)dXdYdZ\
&=abcint_{r=0}^1r^2 (4pi r^2) dr
end{align}$$
where in the last step we used the spherical coordinates.
$endgroup$
Hint for a simpler way. Let $X=x/a$, $Y=y/b$ and $Z=z/c$, then
$$begin{align}int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}&left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)dxdydz\
&=
abcint_{{X^2}+{Y^2}+{Z^2}leq 1}left({X^2}+{Y^2}+{Z^2}right)dXdYdZ\
&=abcint_{r=0}^1r^2 (4pi r^2) dr
end{align}$$
where in the last step we used the spherical coordinates.
edited Jan 7 at 17:14
answered Jan 7 at 17:07


Robert ZRobert Z
95.8k1065136
95.8k1065136
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065223%2fintegration-with-substitution-to-cylindrical-coordinate%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Where is the variable $h$ coming from? Also if you put a backslash before $sin$ and $cos$, they turn into $sin{t}$ and $cos{t}$.
$endgroup$
– Calvin Godfrey
Jan 7 at 17:03
$begingroup$
@CalvinGodfrey $h$ equals $z$, I've fixed it.
$endgroup$
– J. Doe
Jan 7 at 17:04
2
$begingroup$
Change first to $u=x/a$, $v=y/b$, $w=z/c$ and then to spherical coordinates.
$endgroup$
– A.Γ.
Jan 7 at 17:06