Integration with substitution to cylindrical coordinate












1












$begingroup$


Solve the integral
$$
\A:= int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}{x^2over a^2}+{y^2over b^2}+{z^2over c^2}dxdydz
$$





In my solution I have substituted to cylindrical coordinates ($x=roperatorname{cos} t,y=roperatorname{sin} t,z=h$) with the ranges $-1leq hleq 1$ and $0leq tleq 2pi$. And when I get fixed $h$ and $t$, then $r$ "moves" from $0$ until it meets a new elipse which determinated by $a'={{hover c}cdot a}, b'={{hover c}cdot b}$. So I need to find the meeting point of $r$ with the new elipse $1={x^2over a'^2}+{y^2over b'^2}=({r cos tover ah})^2+({rsin tover bh})^2$. Hence, if I sign $lambda:=+{abhover sqrt{a^2sin^2 t+b^2cos^2 t}}$, then the required range of $r$ is from $0$ to $lambda$. Hence, ($J=r$),
$$
\ A=int_{-1}^1int_0^{2pi}int_0^lambda r({r^2cos^2 tover a^2} +{r^2sin^2 tover b^2}+{h^2over c^2})drdtdh
\ =...=int_{-1}^1int_0^{2pi}(lambda^4({cos^2 tover 4a^2}+{sin^2 tover 4 b^2})+lambda^2{h^2over c^2})dtdh
\=...=int_{-1}^1int_0^{2pi}({a^6b^6c^2h^8over 4(a^2sin^2 t+b^2 cos^2 t)^3}+{a^4b^4h^6over c^2(a^2sin^2 t+b^2cos^2 t)^2})dtdh
$$

Is this integral doable or I didn't do this exercise right? Thianks










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Where is the variable $h$ coming from? Also if you put a backslash before $sin$ and $cos$, they turn into $sin{t}$ and $cos{t}$.
    $endgroup$
    – Calvin Godfrey
    Jan 7 at 17:03










  • $begingroup$
    @CalvinGodfrey $h$ equals $z$, I've fixed it.
    $endgroup$
    – J. Doe
    Jan 7 at 17:04






  • 2




    $begingroup$
    Change first to $u=x/a$, $v=y/b$, $w=z/c$ and then to spherical coordinates.
    $endgroup$
    – A.Γ.
    Jan 7 at 17:06
















1












$begingroup$


Solve the integral
$$
\A:= int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}{x^2over a^2}+{y^2over b^2}+{z^2over c^2}dxdydz
$$





In my solution I have substituted to cylindrical coordinates ($x=roperatorname{cos} t,y=roperatorname{sin} t,z=h$) with the ranges $-1leq hleq 1$ and $0leq tleq 2pi$. And when I get fixed $h$ and $t$, then $r$ "moves" from $0$ until it meets a new elipse which determinated by $a'={{hover c}cdot a}, b'={{hover c}cdot b}$. So I need to find the meeting point of $r$ with the new elipse $1={x^2over a'^2}+{y^2over b'^2}=({r cos tover ah})^2+({rsin tover bh})^2$. Hence, if I sign $lambda:=+{abhover sqrt{a^2sin^2 t+b^2cos^2 t}}$, then the required range of $r$ is from $0$ to $lambda$. Hence, ($J=r$),
$$
\ A=int_{-1}^1int_0^{2pi}int_0^lambda r({r^2cos^2 tover a^2} +{r^2sin^2 tover b^2}+{h^2over c^2})drdtdh
\ =...=int_{-1}^1int_0^{2pi}(lambda^4({cos^2 tover 4a^2}+{sin^2 tover 4 b^2})+lambda^2{h^2over c^2})dtdh
\=...=int_{-1}^1int_0^{2pi}({a^6b^6c^2h^8over 4(a^2sin^2 t+b^2 cos^2 t)^3}+{a^4b^4h^6over c^2(a^2sin^2 t+b^2cos^2 t)^2})dtdh
$$

Is this integral doable or I didn't do this exercise right? Thianks










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Where is the variable $h$ coming from? Also if you put a backslash before $sin$ and $cos$, they turn into $sin{t}$ and $cos{t}$.
    $endgroup$
    – Calvin Godfrey
    Jan 7 at 17:03










  • $begingroup$
    @CalvinGodfrey $h$ equals $z$, I've fixed it.
    $endgroup$
    – J. Doe
    Jan 7 at 17:04






  • 2




    $begingroup$
    Change first to $u=x/a$, $v=y/b$, $w=z/c$ and then to spherical coordinates.
    $endgroup$
    – A.Γ.
    Jan 7 at 17:06














1












1








1


0



$begingroup$


Solve the integral
$$
\A:= int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}{x^2over a^2}+{y^2over b^2}+{z^2over c^2}dxdydz
$$





In my solution I have substituted to cylindrical coordinates ($x=roperatorname{cos} t,y=roperatorname{sin} t,z=h$) with the ranges $-1leq hleq 1$ and $0leq tleq 2pi$. And when I get fixed $h$ and $t$, then $r$ "moves" from $0$ until it meets a new elipse which determinated by $a'={{hover c}cdot a}, b'={{hover c}cdot b}$. So I need to find the meeting point of $r$ with the new elipse $1={x^2over a'^2}+{y^2over b'^2}=({r cos tover ah})^2+({rsin tover bh})^2$. Hence, if I sign $lambda:=+{abhover sqrt{a^2sin^2 t+b^2cos^2 t}}$, then the required range of $r$ is from $0$ to $lambda$. Hence, ($J=r$),
$$
\ A=int_{-1}^1int_0^{2pi}int_0^lambda r({r^2cos^2 tover a^2} +{r^2sin^2 tover b^2}+{h^2over c^2})drdtdh
\ =...=int_{-1}^1int_0^{2pi}(lambda^4({cos^2 tover 4a^2}+{sin^2 tover 4 b^2})+lambda^2{h^2over c^2})dtdh
\=...=int_{-1}^1int_0^{2pi}({a^6b^6c^2h^8over 4(a^2sin^2 t+b^2 cos^2 t)^3}+{a^4b^4h^6over c^2(a^2sin^2 t+b^2cos^2 t)^2})dtdh
$$

Is this integral doable or I didn't do this exercise right? Thianks










share|cite|improve this question











$endgroup$




Solve the integral
$$
\A:= int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}{x^2over a^2}+{y^2over b^2}+{z^2over c^2}dxdydz
$$





In my solution I have substituted to cylindrical coordinates ($x=roperatorname{cos} t,y=roperatorname{sin} t,z=h$) with the ranges $-1leq hleq 1$ and $0leq tleq 2pi$. And when I get fixed $h$ and $t$, then $r$ "moves" from $0$ until it meets a new elipse which determinated by $a'={{hover c}cdot a}, b'={{hover c}cdot b}$. So I need to find the meeting point of $r$ with the new elipse $1={x^2over a'^2}+{y^2over b'^2}=({r cos tover ah})^2+({rsin tover bh})^2$. Hence, if I sign $lambda:=+{abhover sqrt{a^2sin^2 t+b^2cos^2 t}}$, then the required range of $r$ is from $0$ to $lambda$. Hence, ($J=r$),
$$
\ A=int_{-1}^1int_0^{2pi}int_0^lambda r({r^2cos^2 tover a^2} +{r^2sin^2 tover b^2}+{h^2over c^2})drdtdh
\ =...=int_{-1}^1int_0^{2pi}(lambda^4({cos^2 tover 4a^2}+{sin^2 tover 4 b^2})+lambda^2{h^2over c^2})dtdh
\=...=int_{-1}^1int_0^{2pi}({a^6b^6c^2h^8over 4(a^2sin^2 t+b^2 cos^2 t)^3}+{a^4b^4h^6over c^2(a^2sin^2 t+b^2cos^2 t)^2})dtdh
$$

Is this integral doable or I didn't do this exercise right? Thianks







integration multivariable-calculus cylindrical-coordinates






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 7 at 17:04







J. Doe

















asked Jan 7 at 16:59









J. DoeJ. Doe

14110




14110








  • 2




    $begingroup$
    Where is the variable $h$ coming from? Also if you put a backslash before $sin$ and $cos$, they turn into $sin{t}$ and $cos{t}$.
    $endgroup$
    – Calvin Godfrey
    Jan 7 at 17:03










  • $begingroup$
    @CalvinGodfrey $h$ equals $z$, I've fixed it.
    $endgroup$
    – J. Doe
    Jan 7 at 17:04






  • 2




    $begingroup$
    Change first to $u=x/a$, $v=y/b$, $w=z/c$ and then to spherical coordinates.
    $endgroup$
    – A.Γ.
    Jan 7 at 17:06














  • 2




    $begingroup$
    Where is the variable $h$ coming from? Also if you put a backslash before $sin$ and $cos$, they turn into $sin{t}$ and $cos{t}$.
    $endgroup$
    – Calvin Godfrey
    Jan 7 at 17:03










  • $begingroup$
    @CalvinGodfrey $h$ equals $z$, I've fixed it.
    $endgroup$
    – J. Doe
    Jan 7 at 17:04






  • 2




    $begingroup$
    Change first to $u=x/a$, $v=y/b$, $w=z/c$ and then to spherical coordinates.
    $endgroup$
    – A.Γ.
    Jan 7 at 17:06








2




2




$begingroup$
Where is the variable $h$ coming from? Also if you put a backslash before $sin$ and $cos$, they turn into $sin{t}$ and $cos{t}$.
$endgroup$
– Calvin Godfrey
Jan 7 at 17:03




$begingroup$
Where is the variable $h$ coming from? Also if you put a backslash before $sin$ and $cos$, they turn into $sin{t}$ and $cos{t}$.
$endgroup$
– Calvin Godfrey
Jan 7 at 17:03












$begingroup$
@CalvinGodfrey $h$ equals $z$, I've fixed it.
$endgroup$
– J. Doe
Jan 7 at 17:04




$begingroup$
@CalvinGodfrey $h$ equals $z$, I've fixed it.
$endgroup$
– J. Doe
Jan 7 at 17:04




2




2




$begingroup$
Change first to $u=x/a$, $v=y/b$, $w=z/c$ and then to spherical coordinates.
$endgroup$
– A.Γ.
Jan 7 at 17:06




$begingroup$
Change first to $u=x/a$, $v=y/b$, $w=z/c$ and then to spherical coordinates.
$endgroup$
– A.Γ.
Jan 7 at 17:06










1 Answer
1






active

oldest

votes


















3












$begingroup$

Hint for a simpler way. Let $X=x/a$, $Y=y/b$ and $Z=z/c$, then
$$begin{align}int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}&left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)dxdydz\
&=
abcint_{{X^2}+{Y^2}+{Z^2}leq 1}left({X^2}+{Y^2}+{Z^2}right)dXdYdZ\
&=abcint_{r=0}^1r^2 (4pi r^2) dr
end{align}$$

where in the last step we used the spherical coordinates.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065223%2fintegration-with-substitution-to-cylindrical-coordinate%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Hint for a simpler way. Let $X=x/a$, $Y=y/b$ and $Z=z/c$, then
    $$begin{align}int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}&left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)dxdydz\
    &=
    abcint_{{X^2}+{Y^2}+{Z^2}leq 1}left({X^2}+{Y^2}+{Z^2}right)dXdYdZ\
    &=abcint_{r=0}^1r^2 (4pi r^2) dr
    end{align}$$

    where in the last step we used the spherical coordinates.






    share|cite|improve this answer











    $endgroup$


















      3












      $begingroup$

      Hint for a simpler way. Let $X=x/a$, $Y=y/b$ and $Z=z/c$, then
      $$begin{align}int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}&left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)dxdydz\
      &=
      abcint_{{X^2}+{Y^2}+{Z^2}leq 1}left({X^2}+{Y^2}+{Z^2}right)dXdYdZ\
      &=abcint_{r=0}^1r^2 (4pi r^2) dr
      end{align}$$

      where in the last step we used the spherical coordinates.






      share|cite|improve this answer











      $endgroup$
















        3












        3








        3





        $begingroup$

        Hint for a simpler way. Let $X=x/a$, $Y=y/b$ and $Z=z/c$, then
        $$begin{align}int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}&left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)dxdydz\
        &=
        abcint_{{X^2}+{Y^2}+{Z^2}leq 1}left({X^2}+{Y^2}+{Z^2}right)dXdYdZ\
        &=abcint_{r=0}^1r^2 (4pi r^2) dr
        end{align}$$

        where in the last step we used the spherical coordinates.






        share|cite|improve this answer











        $endgroup$



        Hint for a simpler way. Let $X=x/a$, $Y=y/b$ and $Z=z/c$, then
        $$begin{align}int_{{x^2over a^2}+{y^2over b^2}+{z^2over c^2}leq 1}&left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)dxdydz\
        &=
        abcint_{{X^2}+{Y^2}+{Z^2}leq 1}left({X^2}+{Y^2}+{Z^2}right)dXdYdZ\
        &=abcint_{r=0}^1r^2 (4pi r^2) dr
        end{align}$$

        where in the last step we used the spherical coordinates.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 7 at 17:14

























        answered Jan 7 at 17:07









        Robert ZRobert Z

        95.8k1065136




        95.8k1065136






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065223%2fintegration-with-substitution-to-cylindrical-coordinate%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith