Showing uniqueness of solution in constrained maximization
$begingroup$
Let $Phi()$ be the CDF for standard normal distribution, and $phi()$ be the PDF for the standard normal distribution. $sigma >0$ and $k ge 0$. We maximize the below equation over $x$.
Maximize
$ f(x) = x[ (k - frac{x}{2 sigma}) Phi(k - frac{x}{2 sigma}) + phi(k - frac{x}{2 sigma})] + (1-x) [(k - frac{x}{2 sigma} - frac{1}{2 sigma})Phi(k - frac{x}{2 sigma} - frac{1}{2 sigma}) + phi(k - frac{x}{2 sigma} - frac{1}{2 sigma})]$
s.t.
$0 le x le 1$.
I'd like to either show that the solution to the above maximization problem is unique or find the sufficient condition (on $sigma$ and $k$) such that the solution is unique.
Note: I have already proved that there exists an interior solution. Also, for some values of $k$ and $sigma$, $f(x)$ is not concave (at least in some values of $x in [0, 1]$). (This is partially why I've been having a difficult time solving/proving this.)
calculus probability-distributions
$endgroup$
add a comment |
$begingroup$
Let $Phi()$ be the CDF for standard normal distribution, and $phi()$ be the PDF for the standard normal distribution. $sigma >0$ and $k ge 0$. We maximize the below equation over $x$.
Maximize
$ f(x) = x[ (k - frac{x}{2 sigma}) Phi(k - frac{x}{2 sigma}) + phi(k - frac{x}{2 sigma})] + (1-x) [(k - frac{x}{2 sigma} - frac{1}{2 sigma})Phi(k - frac{x}{2 sigma} - frac{1}{2 sigma}) + phi(k - frac{x}{2 sigma} - frac{1}{2 sigma})]$
s.t.
$0 le x le 1$.
I'd like to either show that the solution to the above maximization problem is unique or find the sufficient condition (on $sigma$ and $k$) such that the solution is unique.
Note: I have already proved that there exists an interior solution. Also, for some values of $k$ and $sigma$, $f(x)$ is not concave (at least in some values of $x in [0, 1]$). (This is partially why I've been having a difficult time solving/proving this.)
calculus probability-distributions
$endgroup$
add a comment |
$begingroup$
Let $Phi()$ be the CDF for standard normal distribution, and $phi()$ be the PDF for the standard normal distribution. $sigma >0$ and $k ge 0$. We maximize the below equation over $x$.
Maximize
$ f(x) = x[ (k - frac{x}{2 sigma}) Phi(k - frac{x}{2 sigma}) + phi(k - frac{x}{2 sigma})] + (1-x) [(k - frac{x}{2 sigma} - frac{1}{2 sigma})Phi(k - frac{x}{2 sigma} - frac{1}{2 sigma}) + phi(k - frac{x}{2 sigma} - frac{1}{2 sigma})]$
s.t.
$0 le x le 1$.
I'd like to either show that the solution to the above maximization problem is unique or find the sufficient condition (on $sigma$ and $k$) such that the solution is unique.
Note: I have already proved that there exists an interior solution. Also, for some values of $k$ and $sigma$, $f(x)$ is not concave (at least in some values of $x in [0, 1]$). (This is partially why I've been having a difficult time solving/proving this.)
calculus probability-distributions
$endgroup$
Let $Phi()$ be the CDF for standard normal distribution, and $phi()$ be the PDF for the standard normal distribution. $sigma >0$ and $k ge 0$. We maximize the below equation over $x$.
Maximize
$ f(x) = x[ (k - frac{x}{2 sigma}) Phi(k - frac{x}{2 sigma}) + phi(k - frac{x}{2 sigma})] + (1-x) [(k - frac{x}{2 sigma} - frac{1}{2 sigma})Phi(k - frac{x}{2 sigma} - frac{1}{2 sigma}) + phi(k - frac{x}{2 sigma} - frac{1}{2 sigma})]$
s.t.
$0 le x le 1$.
I'd like to either show that the solution to the above maximization problem is unique or find the sufficient condition (on $sigma$ and $k$) such that the solution is unique.
Note: I have already proved that there exists an interior solution. Also, for some values of $k$ and $sigma$, $f(x)$ is not concave (at least in some values of $x in [0, 1]$). (This is partially why I've been having a difficult time solving/proving this.)
calculus probability-distributions
calculus probability-distributions
asked Jan 28 at 4:57
cxu228cxu228
11
11
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090495%2fshowing-uniqueness-of-solution-in-constrained-maximization%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090495%2fshowing-uniqueness-of-solution-in-constrained-maximization%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown