Skew symmetric subtracted from Identity












0












$begingroup$


How can I prove that for any skew-symmetric matrix $S$ with $S^T = -S$, $I - S$ is non-singular and $(I-S)^{-1}(I+S)$ is an orthogonal Matrix (cayley transform of S).










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Are you asking if $(I-S)^{-1}(I-S)=I$ is orthogonal?
    $endgroup$
    – Song
    Jan 27 at 15:43










  • $begingroup$
    Yeah, how can I prove it's orthogonality?
    $endgroup$
    – Usman Ashraf
    Jan 27 at 15:44










  • $begingroup$
    It is identity matrix ...
    $endgroup$
    – Song
    Jan 27 at 15:45










  • $begingroup$
    Thanks. So, just like $A^{-1}A$
    $endgroup$
    – Usman Ashraf
    Jan 27 at 15:47






  • 1




    $begingroup$
    What can I say about the singularity of $I-S$?
    $endgroup$
    – Usman Ashraf
    Jan 27 at 15:48
















0












$begingroup$


How can I prove that for any skew-symmetric matrix $S$ with $S^T = -S$, $I - S$ is non-singular and $(I-S)^{-1}(I+S)$ is an orthogonal Matrix (cayley transform of S).










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Are you asking if $(I-S)^{-1}(I-S)=I$ is orthogonal?
    $endgroup$
    – Song
    Jan 27 at 15:43










  • $begingroup$
    Yeah, how can I prove it's orthogonality?
    $endgroup$
    – Usman Ashraf
    Jan 27 at 15:44










  • $begingroup$
    It is identity matrix ...
    $endgroup$
    – Song
    Jan 27 at 15:45










  • $begingroup$
    Thanks. So, just like $A^{-1}A$
    $endgroup$
    – Usman Ashraf
    Jan 27 at 15:47






  • 1




    $begingroup$
    What can I say about the singularity of $I-S$?
    $endgroup$
    – Usman Ashraf
    Jan 27 at 15:48














0












0








0





$begingroup$


How can I prove that for any skew-symmetric matrix $S$ with $S^T = -S$, $I - S$ is non-singular and $(I-S)^{-1}(I+S)$ is an orthogonal Matrix (cayley transform of S).










share|cite|improve this question











$endgroup$




How can I prove that for any skew-symmetric matrix $S$ with $S^T = -S$, $I - S$ is non-singular and $(I-S)^{-1}(I+S)$ is an orthogonal Matrix (cayley transform of S).







linear-algebra numerical-linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 29 at 6:35







Usman Ashraf

















asked Jan 27 at 15:30









Usman AshrafUsman Ashraf

13




13








  • 2




    $begingroup$
    Are you asking if $(I-S)^{-1}(I-S)=I$ is orthogonal?
    $endgroup$
    – Song
    Jan 27 at 15:43










  • $begingroup$
    Yeah, how can I prove it's orthogonality?
    $endgroup$
    – Usman Ashraf
    Jan 27 at 15:44










  • $begingroup$
    It is identity matrix ...
    $endgroup$
    – Song
    Jan 27 at 15:45










  • $begingroup$
    Thanks. So, just like $A^{-1}A$
    $endgroup$
    – Usman Ashraf
    Jan 27 at 15:47






  • 1




    $begingroup$
    What can I say about the singularity of $I-S$?
    $endgroup$
    – Usman Ashraf
    Jan 27 at 15:48














  • 2




    $begingroup$
    Are you asking if $(I-S)^{-1}(I-S)=I$ is orthogonal?
    $endgroup$
    – Song
    Jan 27 at 15:43










  • $begingroup$
    Yeah, how can I prove it's orthogonality?
    $endgroup$
    – Usman Ashraf
    Jan 27 at 15:44










  • $begingroup$
    It is identity matrix ...
    $endgroup$
    – Song
    Jan 27 at 15:45










  • $begingroup$
    Thanks. So, just like $A^{-1}A$
    $endgroup$
    – Usman Ashraf
    Jan 27 at 15:47






  • 1




    $begingroup$
    What can I say about the singularity of $I-S$?
    $endgroup$
    – Usman Ashraf
    Jan 27 at 15:48








2




2




$begingroup$
Are you asking if $(I-S)^{-1}(I-S)=I$ is orthogonal?
$endgroup$
– Song
Jan 27 at 15:43




$begingroup$
Are you asking if $(I-S)^{-1}(I-S)=I$ is orthogonal?
$endgroup$
– Song
Jan 27 at 15:43












$begingroup$
Yeah, how can I prove it's orthogonality?
$endgroup$
– Usman Ashraf
Jan 27 at 15:44




$begingroup$
Yeah, how can I prove it's orthogonality?
$endgroup$
– Usman Ashraf
Jan 27 at 15:44












$begingroup$
It is identity matrix ...
$endgroup$
– Song
Jan 27 at 15:45




$begingroup$
It is identity matrix ...
$endgroup$
– Song
Jan 27 at 15:45












$begingroup$
Thanks. So, just like $A^{-1}A$
$endgroup$
– Usman Ashraf
Jan 27 at 15:47




$begingroup$
Thanks. So, just like $A^{-1}A$
$endgroup$
– Usman Ashraf
Jan 27 at 15:47




1




1




$begingroup$
What can I say about the singularity of $I-S$?
$endgroup$
– Usman Ashraf
Jan 27 at 15:48




$begingroup$
What can I say about the singularity of $I-S$?
$endgroup$
– Usman Ashraf
Jan 27 at 15:48










1 Answer
1






active

oldest

votes


















0












$begingroup$

Let $Sx=x $,then $S^TSx=S^Tx=-Sx=-x $. Since $S^TS $ is positive semidefinite, $-1$ is not an eigenvalue of $S^TS $, hence $x=0$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Can you explain how you equated $-S^Tx$ to -x?
    $endgroup$
    – Usman Ashraf
    Jan 28 at 4:52










  • $begingroup$
    $Sx=x$, hence $S^Tx=-Sx=-x$.
    $endgroup$
    – Fred
    Jan 28 at 6:13










  • $begingroup$
    Can you also say why can you assume that Sx = x in the first place? Also, how x = 0 should that I-S is non-singular?
    $endgroup$
    – Usman Ashraf
    Jan 29 at 6:25










  • $begingroup$
    $I-S$ is non-singular $ iff ker(I-S)={0}$. Now let $x in ker(I-S)$, then $Sx=x$. Above I have shown that this implies $x=0$. Hence $ ker(I-S)={0}$.
    $endgroup$
    – Fred
    Jan 29 at 6:30










  • $begingroup$
    Alright, that makes sense! Thanks. Can you say, how can I prove orthogonality for (I-S)^-1 * (I+S). I just added this in the question.
    $endgroup$
    – Usman Ashraf
    Jan 29 at 6:37











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089702%2fskew-symmetric-subtracted-from-identity%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Let $Sx=x $,then $S^TSx=S^Tx=-Sx=-x $. Since $S^TS $ is positive semidefinite, $-1$ is not an eigenvalue of $S^TS $, hence $x=0$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Can you explain how you equated $-S^Tx$ to -x?
    $endgroup$
    – Usman Ashraf
    Jan 28 at 4:52










  • $begingroup$
    $Sx=x$, hence $S^Tx=-Sx=-x$.
    $endgroup$
    – Fred
    Jan 28 at 6:13










  • $begingroup$
    Can you also say why can you assume that Sx = x in the first place? Also, how x = 0 should that I-S is non-singular?
    $endgroup$
    – Usman Ashraf
    Jan 29 at 6:25










  • $begingroup$
    $I-S$ is non-singular $ iff ker(I-S)={0}$. Now let $x in ker(I-S)$, then $Sx=x$. Above I have shown that this implies $x=0$. Hence $ ker(I-S)={0}$.
    $endgroup$
    – Fred
    Jan 29 at 6:30










  • $begingroup$
    Alright, that makes sense! Thanks. Can you say, how can I prove orthogonality for (I-S)^-1 * (I+S). I just added this in the question.
    $endgroup$
    – Usman Ashraf
    Jan 29 at 6:37
















0












$begingroup$

Let $Sx=x $,then $S^TSx=S^Tx=-Sx=-x $. Since $S^TS $ is positive semidefinite, $-1$ is not an eigenvalue of $S^TS $, hence $x=0$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Can you explain how you equated $-S^Tx$ to -x?
    $endgroup$
    – Usman Ashraf
    Jan 28 at 4:52










  • $begingroup$
    $Sx=x$, hence $S^Tx=-Sx=-x$.
    $endgroup$
    – Fred
    Jan 28 at 6:13










  • $begingroup$
    Can you also say why can you assume that Sx = x in the first place? Also, how x = 0 should that I-S is non-singular?
    $endgroup$
    – Usman Ashraf
    Jan 29 at 6:25










  • $begingroup$
    $I-S$ is non-singular $ iff ker(I-S)={0}$. Now let $x in ker(I-S)$, then $Sx=x$. Above I have shown that this implies $x=0$. Hence $ ker(I-S)={0}$.
    $endgroup$
    – Fred
    Jan 29 at 6:30










  • $begingroup$
    Alright, that makes sense! Thanks. Can you say, how can I prove orthogonality for (I-S)^-1 * (I+S). I just added this in the question.
    $endgroup$
    – Usman Ashraf
    Jan 29 at 6:37














0












0








0





$begingroup$

Let $Sx=x $,then $S^TSx=S^Tx=-Sx=-x $. Since $S^TS $ is positive semidefinite, $-1$ is not an eigenvalue of $S^TS $, hence $x=0$.






share|cite|improve this answer









$endgroup$



Let $Sx=x $,then $S^TSx=S^Tx=-Sx=-x $. Since $S^TS $ is positive semidefinite, $-1$ is not an eigenvalue of $S^TS $, hence $x=0$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 28 at 4:39









FredFred

48.7k11849




48.7k11849












  • $begingroup$
    Can you explain how you equated $-S^Tx$ to -x?
    $endgroup$
    – Usman Ashraf
    Jan 28 at 4:52










  • $begingroup$
    $Sx=x$, hence $S^Tx=-Sx=-x$.
    $endgroup$
    – Fred
    Jan 28 at 6:13










  • $begingroup$
    Can you also say why can you assume that Sx = x in the first place? Also, how x = 0 should that I-S is non-singular?
    $endgroup$
    – Usman Ashraf
    Jan 29 at 6:25










  • $begingroup$
    $I-S$ is non-singular $ iff ker(I-S)={0}$. Now let $x in ker(I-S)$, then $Sx=x$. Above I have shown that this implies $x=0$. Hence $ ker(I-S)={0}$.
    $endgroup$
    – Fred
    Jan 29 at 6:30










  • $begingroup$
    Alright, that makes sense! Thanks. Can you say, how can I prove orthogonality for (I-S)^-1 * (I+S). I just added this in the question.
    $endgroup$
    – Usman Ashraf
    Jan 29 at 6:37


















  • $begingroup$
    Can you explain how you equated $-S^Tx$ to -x?
    $endgroup$
    – Usman Ashraf
    Jan 28 at 4:52










  • $begingroup$
    $Sx=x$, hence $S^Tx=-Sx=-x$.
    $endgroup$
    – Fred
    Jan 28 at 6:13










  • $begingroup$
    Can you also say why can you assume that Sx = x in the first place? Also, how x = 0 should that I-S is non-singular?
    $endgroup$
    – Usman Ashraf
    Jan 29 at 6:25










  • $begingroup$
    $I-S$ is non-singular $ iff ker(I-S)={0}$. Now let $x in ker(I-S)$, then $Sx=x$. Above I have shown that this implies $x=0$. Hence $ ker(I-S)={0}$.
    $endgroup$
    – Fred
    Jan 29 at 6:30










  • $begingroup$
    Alright, that makes sense! Thanks. Can you say, how can I prove orthogonality for (I-S)^-1 * (I+S). I just added this in the question.
    $endgroup$
    – Usman Ashraf
    Jan 29 at 6:37
















$begingroup$
Can you explain how you equated $-S^Tx$ to -x?
$endgroup$
– Usman Ashraf
Jan 28 at 4:52




$begingroup$
Can you explain how you equated $-S^Tx$ to -x?
$endgroup$
– Usman Ashraf
Jan 28 at 4:52












$begingroup$
$Sx=x$, hence $S^Tx=-Sx=-x$.
$endgroup$
– Fred
Jan 28 at 6:13




$begingroup$
$Sx=x$, hence $S^Tx=-Sx=-x$.
$endgroup$
– Fred
Jan 28 at 6:13












$begingroup$
Can you also say why can you assume that Sx = x in the first place? Also, how x = 0 should that I-S is non-singular?
$endgroup$
– Usman Ashraf
Jan 29 at 6:25




$begingroup$
Can you also say why can you assume that Sx = x in the first place? Also, how x = 0 should that I-S is non-singular?
$endgroup$
– Usman Ashraf
Jan 29 at 6:25












$begingroup$
$I-S$ is non-singular $ iff ker(I-S)={0}$. Now let $x in ker(I-S)$, then $Sx=x$. Above I have shown that this implies $x=0$. Hence $ ker(I-S)={0}$.
$endgroup$
– Fred
Jan 29 at 6:30




$begingroup$
$I-S$ is non-singular $ iff ker(I-S)={0}$. Now let $x in ker(I-S)$, then $Sx=x$. Above I have shown that this implies $x=0$. Hence $ ker(I-S)={0}$.
$endgroup$
– Fred
Jan 29 at 6:30












$begingroup$
Alright, that makes sense! Thanks. Can you say, how can I prove orthogonality for (I-S)^-1 * (I+S). I just added this in the question.
$endgroup$
– Usman Ashraf
Jan 29 at 6:37




$begingroup$
Alright, that makes sense! Thanks. Can you say, how can I prove orthogonality for (I-S)^-1 * (I+S). I just added this in the question.
$endgroup$
– Usman Ashraf
Jan 29 at 6:37


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089702%2fskew-symmetric-subtracted-from-identity%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

How to fix TextFormField cause rebuild widget in Flutter