Solve recursion $a_n=a_{n-1}-6cdot3^{n-1}$ for $n>0, a_0=0$
$begingroup$
$a_n=a_{n-1}-6cdot3^{n-1}$ for $n>0, a_0=0$
So I calculate first terms
$a_0=0$
$a_1=-6$
$a_2=-24$
$a_3=-78$
I don't see any relation so
$a_n=a_{n-1}-6cdot3^{n-1}$
$a_{n-1}=a_{n-2}-6cdot 3^{n-2}$
. . .
$a_2=a_1-6cdot3^{1}$
$a_1=a_0-6cdot 3^{0}$
Not sure what to do next, Wolfram solves it in this way:
$a_n=-3cdot(3^{n}-1)$
How do I get to this point?
discrete-mathematics
$endgroup$
add a comment |
$begingroup$
$a_n=a_{n-1}-6cdot3^{n-1}$ for $n>0, a_0=0$
So I calculate first terms
$a_0=0$
$a_1=-6$
$a_2=-24$
$a_3=-78$
I don't see any relation so
$a_n=a_{n-1}-6cdot3^{n-1}$
$a_{n-1}=a_{n-2}-6cdot 3^{n-2}$
. . .
$a_2=a_1-6cdot3^{1}$
$a_1=a_0-6cdot 3^{0}$
Not sure what to do next, Wolfram solves it in this way:
$a_n=-3cdot(3^{n}-1)$
How do I get to this point?
discrete-mathematics
$endgroup$
$begingroup$
Welcome to TeX SX! Do you mean $a_n$ or $an$?
$endgroup$
– Bernard
Jan 27 at 13:07
$begingroup$
Hello, yes I meant first option, didn't know how to do it in tex, sorry.
$endgroup$
– Gorosso
Jan 27 at 13:14
$begingroup$
it's justa_{n}, a_{n-1}
, &c. If there's only 1 character in subscript, the braces are not necessary.
$endgroup$
– Bernard
Jan 27 at 13:21
add a comment |
$begingroup$
$a_n=a_{n-1}-6cdot3^{n-1}$ for $n>0, a_0=0$
So I calculate first terms
$a_0=0$
$a_1=-6$
$a_2=-24$
$a_3=-78$
I don't see any relation so
$a_n=a_{n-1}-6cdot3^{n-1}$
$a_{n-1}=a_{n-2}-6cdot 3^{n-2}$
. . .
$a_2=a_1-6cdot3^{1}$
$a_1=a_0-6cdot 3^{0}$
Not sure what to do next, Wolfram solves it in this way:
$a_n=-3cdot(3^{n}-1)$
How do I get to this point?
discrete-mathematics
$endgroup$
$a_n=a_{n-1}-6cdot3^{n-1}$ for $n>0, a_0=0$
So I calculate first terms
$a_0=0$
$a_1=-6$
$a_2=-24$
$a_3=-78$
I don't see any relation so
$a_n=a_{n-1}-6cdot3^{n-1}$
$a_{n-1}=a_{n-2}-6cdot 3^{n-2}$
. . .
$a_2=a_1-6cdot3^{1}$
$a_1=a_0-6cdot 3^{0}$
Not sure what to do next, Wolfram solves it in this way:
$a_n=-3cdot(3^{n}-1)$
How do I get to this point?
discrete-mathematics
discrete-mathematics
edited Jan 27 at 13:13


Stefan4024
30.6k63579
30.6k63579
asked Jan 27 at 13:06


GorossoGorosso
315
315
$begingroup$
Welcome to TeX SX! Do you mean $a_n$ or $an$?
$endgroup$
– Bernard
Jan 27 at 13:07
$begingroup$
Hello, yes I meant first option, didn't know how to do it in tex, sorry.
$endgroup$
– Gorosso
Jan 27 at 13:14
$begingroup$
it's justa_{n}, a_{n-1}
, &c. If there's only 1 character in subscript, the braces are not necessary.
$endgroup$
– Bernard
Jan 27 at 13:21
add a comment |
$begingroup$
Welcome to TeX SX! Do you mean $a_n$ or $an$?
$endgroup$
– Bernard
Jan 27 at 13:07
$begingroup$
Hello, yes I meant first option, didn't know how to do it in tex, sorry.
$endgroup$
– Gorosso
Jan 27 at 13:14
$begingroup$
it's justa_{n}, a_{n-1}
, &c. If there's only 1 character in subscript, the braces are not necessary.
$endgroup$
– Bernard
Jan 27 at 13:21
$begingroup$
Welcome to TeX SX! Do you mean $a_n$ or $an$?
$endgroup$
– Bernard
Jan 27 at 13:07
$begingroup$
Welcome to TeX SX! Do you mean $a_n$ or $an$?
$endgroup$
– Bernard
Jan 27 at 13:07
$begingroup$
Hello, yes I meant first option, didn't know how to do it in tex, sorry.
$endgroup$
– Gorosso
Jan 27 at 13:14
$begingroup$
Hello, yes I meant first option, didn't know how to do it in tex, sorry.
$endgroup$
– Gorosso
Jan 27 at 13:14
$begingroup$
it's just
a_{n}, a_{n-1}
, &c. If there's only 1 character in subscript, the braces are not necessary.$endgroup$
– Bernard
Jan 27 at 13:21
$begingroup$
it's just
a_{n}, a_{n-1}
, &c. If there's only 1 character in subscript, the braces are not necessary.$endgroup$
– Bernard
Jan 27 at 13:21
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
You have
$$a_n=a_n=a_{n-1}-6cdot 3^{n-1}=a_{n-2}-6cdot 3^{n-2}-6cdot 3^{n-1}=dotsm,$$
so you can prove with an easy induction that
$$a_n = a_0-6sum_{k=0}^{n-1} 3^k=-6frac{3^n-1}{3-1}.$$
$endgroup$
add a comment |
$begingroup$
hint...consider $$sum_{r=0}^{r=n}(a_{r+1}-a_r)=sum_{r=0}^{r=n}-6cdot3^r$$
The LHS is a telescoping series and the RHS is a geometric series.
$endgroup$
add a comment |
$begingroup$
This is just a Geometric Series:
$$a_n=-6sum_{i=1}^n3^{i-1}=-6sum_{i=0}^{n-1}3^i=-6times frac {3^n-1}{3-1}=-3times (3^n-1)$$
$endgroup$
add a comment |
$begingroup$
Note that for all $n$ we have $$a_{n+1}-a_n = -6cdot 3^n $$
so we have also: $$a_n-a_{n-1}=-6cdot3^{n-1}$$
thus $$a_{n+1}-a_n = 3(-6cdot3^{n-1}) = 3(a_n-a_{n-1})$$
{or divide this two equations: $${a_{n+1}-a_n over a_n-a_{n-1}}= {-6cdot 3^nover -6cdot3^{n-1}} = 3$$}
so you have to solve linear recurrence:
$$ a_{n+1}-4a_n+3a_{n-1}=0$$
CAn you do that?
$endgroup$
$begingroup$
ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
$endgroup$
– Gorosso
Jan 27 at 14:40
1
$begingroup$
Yes, that is correct!
$endgroup$
– Maria Mazur
Jan 27 at 14:40
1
$begingroup$
Is that better?
$endgroup$
– Maria Mazur
Jan 27 at 14:52
1
$begingroup$
What about now?
$endgroup$
– Maria Mazur
Jan 27 at 15:51
1
$begingroup$
Just put first and last expression on one side, so you get 0 on other side
$endgroup$
– Maria Mazur
Jan 27 at 16:54
|
show 4 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089539%2fsolve-recursion-a-n-a-n-1-6-cdot3n-1-for-n0-a-0-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have
$$a_n=a_n=a_{n-1}-6cdot 3^{n-1}=a_{n-2}-6cdot 3^{n-2}-6cdot 3^{n-1}=dotsm,$$
so you can prove with an easy induction that
$$a_n = a_0-6sum_{k=0}^{n-1} 3^k=-6frac{3^n-1}{3-1}.$$
$endgroup$
add a comment |
$begingroup$
You have
$$a_n=a_n=a_{n-1}-6cdot 3^{n-1}=a_{n-2}-6cdot 3^{n-2}-6cdot 3^{n-1}=dotsm,$$
so you can prove with an easy induction that
$$a_n = a_0-6sum_{k=0}^{n-1} 3^k=-6frac{3^n-1}{3-1}.$$
$endgroup$
add a comment |
$begingroup$
You have
$$a_n=a_n=a_{n-1}-6cdot 3^{n-1}=a_{n-2}-6cdot 3^{n-2}-6cdot 3^{n-1}=dotsm,$$
so you can prove with an easy induction that
$$a_n = a_0-6sum_{k=0}^{n-1} 3^k=-6frac{3^n-1}{3-1}.$$
$endgroup$
You have
$$a_n=a_n=a_{n-1}-6cdot 3^{n-1}=a_{n-2}-6cdot 3^{n-2}-6cdot 3^{n-1}=dotsm,$$
so you can prove with an easy induction that
$$a_n = a_0-6sum_{k=0}^{n-1} 3^k=-6frac{3^n-1}{3-1}.$$
answered Jan 27 at 13:19
BernardBernard
123k741117
123k741117
add a comment |
add a comment |
$begingroup$
hint...consider $$sum_{r=0}^{r=n}(a_{r+1}-a_r)=sum_{r=0}^{r=n}-6cdot3^r$$
The LHS is a telescoping series and the RHS is a geometric series.
$endgroup$
add a comment |
$begingroup$
hint...consider $$sum_{r=0}^{r=n}(a_{r+1}-a_r)=sum_{r=0}^{r=n}-6cdot3^r$$
The LHS is a telescoping series and the RHS is a geometric series.
$endgroup$
add a comment |
$begingroup$
hint...consider $$sum_{r=0}^{r=n}(a_{r+1}-a_r)=sum_{r=0}^{r=n}-6cdot3^r$$
The LHS is a telescoping series and the RHS is a geometric series.
$endgroup$
hint...consider $$sum_{r=0}^{r=n}(a_{r+1}-a_r)=sum_{r=0}^{r=n}-6cdot3^r$$
The LHS is a telescoping series and the RHS is a geometric series.
answered Jan 27 at 13:20
David QuinnDavid Quinn
24.1k21141
24.1k21141
add a comment |
add a comment |
$begingroup$
This is just a Geometric Series:
$$a_n=-6sum_{i=1}^n3^{i-1}=-6sum_{i=0}^{n-1}3^i=-6times frac {3^n-1}{3-1}=-3times (3^n-1)$$
$endgroup$
add a comment |
$begingroup$
This is just a Geometric Series:
$$a_n=-6sum_{i=1}^n3^{i-1}=-6sum_{i=0}^{n-1}3^i=-6times frac {3^n-1}{3-1}=-3times (3^n-1)$$
$endgroup$
add a comment |
$begingroup$
This is just a Geometric Series:
$$a_n=-6sum_{i=1}^n3^{i-1}=-6sum_{i=0}^{n-1}3^i=-6times frac {3^n-1}{3-1}=-3times (3^n-1)$$
$endgroup$
This is just a Geometric Series:
$$a_n=-6sum_{i=1}^n3^{i-1}=-6sum_{i=0}^{n-1}3^i=-6times frac {3^n-1}{3-1}=-3times (3^n-1)$$
answered Jan 27 at 13:14
lulululu
43.2k25080
43.2k25080
add a comment |
add a comment |
$begingroup$
Note that for all $n$ we have $$a_{n+1}-a_n = -6cdot 3^n $$
so we have also: $$a_n-a_{n-1}=-6cdot3^{n-1}$$
thus $$a_{n+1}-a_n = 3(-6cdot3^{n-1}) = 3(a_n-a_{n-1})$$
{or divide this two equations: $${a_{n+1}-a_n over a_n-a_{n-1}}= {-6cdot 3^nover -6cdot3^{n-1}} = 3$$}
so you have to solve linear recurrence:
$$ a_{n+1}-4a_n+3a_{n-1}=0$$
CAn you do that?
$endgroup$
$begingroup$
ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
$endgroup$
– Gorosso
Jan 27 at 14:40
1
$begingroup$
Yes, that is correct!
$endgroup$
– Maria Mazur
Jan 27 at 14:40
1
$begingroup$
Is that better?
$endgroup$
– Maria Mazur
Jan 27 at 14:52
1
$begingroup$
What about now?
$endgroup$
– Maria Mazur
Jan 27 at 15:51
1
$begingroup$
Just put first and last expression on one side, so you get 0 on other side
$endgroup$
– Maria Mazur
Jan 27 at 16:54
|
show 4 more comments
$begingroup$
Note that for all $n$ we have $$a_{n+1}-a_n = -6cdot 3^n $$
so we have also: $$a_n-a_{n-1}=-6cdot3^{n-1}$$
thus $$a_{n+1}-a_n = 3(-6cdot3^{n-1}) = 3(a_n-a_{n-1})$$
{or divide this two equations: $${a_{n+1}-a_n over a_n-a_{n-1}}= {-6cdot 3^nover -6cdot3^{n-1}} = 3$$}
so you have to solve linear recurrence:
$$ a_{n+1}-4a_n+3a_{n-1}=0$$
CAn you do that?
$endgroup$
$begingroup$
ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
$endgroup$
– Gorosso
Jan 27 at 14:40
1
$begingroup$
Yes, that is correct!
$endgroup$
– Maria Mazur
Jan 27 at 14:40
1
$begingroup$
Is that better?
$endgroup$
– Maria Mazur
Jan 27 at 14:52
1
$begingroup$
What about now?
$endgroup$
– Maria Mazur
Jan 27 at 15:51
1
$begingroup$
Just put first and last expression on one side, so you get 0 on other side
$endgroup$
– Maria Mazur
Jan 27 at 16:54
|
show 4 more comments
$begingroup$
Note that for all $n$ we have $$a_{n+1}-a_n = -6cdot 3^n $$
so we have also: $$a_n-a_{n-1}=-6cdot3^{n-1}$$
thus $$a_{n+1}-a_n = 3(-6cdot3^{n-1}) = 3(a_n-a_{n-1})$$
{or divide this two equations: $${a_{n+1}-a_n over a_n-a_{n-1}}= {-6cdot 3^nover -6cdot3^{n-1}} = 3$$}
so you have to solve linear recurrence:
$$ a_{n+1}-4a_n+3a_{n-1}=0$$
CAn you do that?
$endgroup$
Note that for all $n$ we have $$a_{n+1}-a_n = -6cdot 3^n $$
so we have also: $$a_n-a_{n-1}=-6cdot3^{n-1}$$
thus $$a_{n+1}-a_n = 3(-6cdot3^{n-1}) = 3(a_n-a_{n-1})$$
{or divide this two equations: $${a_{n+1}-a_n over a_n-a_{n-1}}= {-6cdot 3^nover -6cdot3^{n-1}} = 3$$}
so you have to solve linear recurrence:
$$ a_{n+1}-4a_n+3a_{n-1}=0$$
CAn you do that?
edited Jan 27 at 15:51
answered Jan 27 at 13:12


Maria MazurMaria Mazur
48.3k1260121
48.3k1260121
$begingroup$
ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
$endgroup$
– Gorosso
Jan 27 at 14:40
1
$begingroup$
Yes, that is correct!
$endgroup$
– Maria Mazur
Jan 27 at 14:40
1
$begingroup$
Is that better?
$endgroup$
– Maria Mazur
Jan 27 at 14:52
1
$begingroup$
What about now?
$endgroup$
– Maria Mazur
Jan 27 at 15:51
1
$begingroup$
Just put first and last expression on one side, so you get 0 on other side
$endgroup$
– Maria Mazur
Jan 27 at 16:54
|
show 4 more comments
$begingroup$
ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
$endgroup$
– Gorosso
Jan 27 at 14:40
1
$begingroup$
Yes, that is correct!
$endgroup$
– Maria Mazur
Jan 27 at 14:40
1
$begingroup$
Is that better?
$endgroup$
– Maria Mazur
Jan 27 at 14:52
1
$begingroup$
What about now?
$endgroup$
– Maria Mazur
Jan 27 at 15:51
1
$begingroup$
Just put first and last expression on one side, so you get 0 on other side
$endgroup$
– Maria Mazur
Jan 27 at 16:54
$begingroup$
ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
$endgroup$
– Gorosso
Jan 27 at 14:40
$begingroup$
ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
$endgroup$
– Gorosso
Jan 27 at 14:40
1
1
$begingroup$
Yes, that is correct!
$endgroup$
– Maria Mazur
Jan 27 at 14:40
$begingroup$
Yes, that is correct!
$endgroup$
– Maria Mazur
Jan 27 at 14:40
1
1
$begingroup$
Is that better?
$endgroup$
– Maria Mazur
Jan 27 at 14:52
$begingroup$
Is that better?
$endgroup$
– Maria Mazur
Jan 27 at 14:52
1
1
$begingroup$
What about now?
$endgroup$
– Maria Mazur
Jan 27 at 15:51
$begingroup$
What about now?
$endgroup$
– Maria Mazur
Jan 27 at 15:51
1
1
$begingroup$
Just put first and last expression on one side, so you get 0 on other side
$endgroup$
– Maria Mazur
Jan 27 at 16:54
$begingroup$
Just put first and last expression on one side, so you get 0 on other side
$endgroup$
– Maria Mazur
Jan 27 at 16:54
|
show 4 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089539%2fsolve-recursion-a-n-a-n-1-6-cdot3n-1-for-n0-a-0-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Welcome to TeX SX! Do you mean $a_n$ or $an$?
$endgroup$
– Bernard
Jan 27 at 13:07
$begingroup$
Hello, yes I meant first option, didn't know how to do it in tex, sorry.
$endgroup$
– Gorosso
Jan 27 at 13:14
$begingroup$
it's just
a_{n}, a_{n-1}
, &c. If there's only 1 character in subscript, the braces are not necessary.$endgroup$
– Bernard
Jan 27 at 13:21