Solve recursion $a_n=a_{n-1}-6cdot3^{n-1}$ for $n>0, a_0=0$












1












$begingroup$


$a_n=a_{n-1}-6cdot3^{n-1}$ for $n>0, a_0=0$



So I calculate first terms



$a_0=0$



$a_1=-6$



$a_2=-24$



$a_3=-78$



I don't see any relation so



$a_n=a_{n-1}-6cdot3^{n-1}$



$a_{n-1}=a_{n-2}-6cdot 3^{n-2}$



. . .



$a_2=a_1-6cdot3^{1}$



$a_1=a_0-6cdot 3^{0}$



Not sure what to do next, Wolfram solves it in this way:



$a_n=-3cdot(3^{n}-1)$



How do I get to this point?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Welcome to TeX SX! Do you mean $a_n$ or $an$?
    $endgroup$
    – Bernard
    Jan 27 at 13:07










  • $begingroup$
    Hello, yes I meant first option, didn't know how to do it in tex, sorry.
    $endgroup$
    – Gorosso
    Jan 27 at 13:14










  • $begingroup$
    it's just a_{n}, a_{n-1}, &c. If there's only 1 character in subscript, the braces are not necessary.
    $endgroup$
    – Bernard
    Jan 27 at 13:21
















1












$begingroup$


$a_n=a_{n-1}-6cdot3^{n-1}$ for $n>0, a_0=0$



So I calculate first terms



$a_0=0$



$a_1=-6$



$a_2=-24$



$a_3=-78$



I don't see any relation so



$a_n=a_{n-1}-6cdot3^{n-1}$



$a_{n-1}=a_{n-2}-6cdot 3^{n-2}$



. . .



$a_2=a_1-6cdot3^{1}$



$a_1=a_0-6cdot 3^{0}$



Not sure what to do next, Wolfram solves it in this way:



$a_n=-3cdot(3^{n}-1)$



How do I get to this point?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Welcome to TeX SX! Do you mean $a_n$ or $an$?
    $endgroup$
    – Bernard
    Jan 27 at 13:07










  • $begingroup$
    Hello, yes I meant first option, didn't know how to do it in tex, sorry.
    $endgroup$
    – Gorosso
    Jan 27 at 13:14










  • $begingroup$
    it's just a_{n}, a_{n-1}, &c. If there's only 1 character in subscript, the braces are not necessary.
    $endgroup$
    – Bernard
    Jan 27 at 13:21














1












1








1





$begingroup$


$a_n=a_{n-1}-6cdot3^{n-1}$ for $n>0, a_0=0$



So I calculate first terms



$a_0=0$



$a_1=-6$



$a_2=-24$



$a_3=-78$



I don't see any relation so



$a_n=a_{n-1}-6cdot3^{n-1}$



$a_{n-1}=a_{n-2}-6cdot 3^{n-2}$



. . .



$a_2=a_1-6cdot3^{1}$



$a_1=a_0-6cdot 3^{0}$



Not sure what to do next, Wolfram solves it in this way:



$a_n=-3cdot(3^{n}-1)$



How do I get to this point?










share|cite|improve this question











$endgroup$




$a_n=a_{n-1}-6cdot3^{n-1}$ for $n>0, a_0=0$



So I calculate first terms



$a_0=0$



$a_1=-6$



$a_2=-24$



$a_3=-78$



I don't see any relation so



$a_n=a_{n-1}-6cdot3^{n-1}$



$a_{n-1}=a_{n-2}-6cdot 3^{n-2}$



. . .



$a_2=a_1-6cdot3^{1}$



$a_1=a_0-6cdot 3^{0}$



Not sure what to do next, Wolfram solves it in this way:



$a_n=-3cdot(3^{n}-1)$



How do I get to this point?







discrete-mathematics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 27 at 13:13









Stefan4024

30.6k63579




30.6k63579










asked Jan 27 at 13:06









GorossoGorosso

315




315












  • $begingroup$
    Welcome to TeX SX! Do you mean $a_n$ or $an$?
    $endgroup$
    – Bernard
    Jan 27 at 13:07










  • $begingroup$
    Hello, yes I meant first option, didn't know how to do it in tex, sorry.
    $endgroup$
    – Gorosso
    Jan 27 at 13:14










  • $begingroup$
    it's just a_{n}, a_{n-1}, &c. If there's only 1 character in subscript, the braces are not necessary.
    $endgroup$
    – Bernard
    Jan 27 at 13:21


















  • $begingroup$
    Welcome to TeX SX! Do you mean $a_n$ or $an$?
    $endgroup$
    – Bernard
    Jan 27 at 13:07










  • $begingroup$
    Hello, yes I meant first option, didn't know how to do it in tex, sorry.
    $endgroup$
    – Gorosso
    Jan 27 at 13:14










  • $begingroup$
    it's just a_{n}, a_{n-1}, &c. If there's only 1 character in subscript, the braces are not necessary.
    $endgroup$
    – Bernard
    Jan 27 at 13:21
















$begingroup$
Welcome to TeX SX! Do you mean $a_n$ or $an$?
$endgroup$
– Bernard
Jan 27 at 13:07




$begingroup$
Welcome to TeX SX! Do you mean $a_n$ or $an$?
$endgroup$
– Bernard
Jan 27 at 13:07












$begingroup$
Hello, yes I meant first option, didn't know how to do it in tex, sorry.
$endgroup$
– Gorosso
Jan 27 at 13:14




$begingroup$
Hello, yes I meant first option, didn't know how to do it in tex, sorry.
$endgroup$
– Gorosso
Jan 27 at 13:14












$begingroup$
it's just a_{n}, a_{n-1}, &c. If there's only 1 character in subscript, the braces are not necessary.
$endgroup$
– Bernard
Jan 27 at 13:21




$begingroup$
it's just a_{n}, a_{n-1}, &c. If there's only 1 character in subscript, the braces are not necessary.
$endgroup$
– Bernard
Jan 27 at 13:21










4 Answers
4






active

oldest

votes


















2












$begingroup$

You have
$$a_n=a_n=a_{n-1}-6cdot 3^{n-1}=a_{n-2}-6cdot 3^{n-2}-6cdot 3^{n-1}=dotsm,$$
so you can prove with an easy induction that
$$a_n = a_0-6sum_{k=0}^{n-1} 3^k=-6frac{3^n-1}{3-1}.$$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    hint...consider $$sum_{r=0}^{r=n}(a_{r+1}-a_r)=sum_{r=0}^{r=n}-6cdot3^r$$



    The LHS is a telescoping series and the RHS is a geometric series.






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      This is just a Geometric Series:



      $$a_n=-6sum_{i=1}^n3^{i-1}=-6sum_{i=0}^{n-1}3^i=-6times frac {3^n-1}{3-1}=-3times (3^n-1)$$






      share|cite|improve this answer









      $endgroup$





















        1












        $begingroup$

        Note that for all $n$ we have $$a_{n+1}-a_n = -6cdot 3^n $$



        so we have also: $$a_n-a_{n-1}=-6cdot3^{n-1}$$



        thus $$a_{n+1}-a_n = 3(-6cdot3^{n-1}) = 3(a_n-a_{n-1})$$



        {or divide this two equations: $${a_{n+1}-a_n over a_n-a_{n-1}}= {-6cdot 3^nover -6cdot3^{n-1}} = 3$$}



        so you have to solve linear recurrence:



        $$ a_{n+1}-4a_n+3a_{n-1}=0$$



        CAn you do that?






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
          $endgroup$
          – Gorosso
          Jan 27 at 14:40








        • 1




          $begingroup$
          Yes, that is correct!
          $endgroup$
          – Maria Mazur
          Jan 27 at 14:40






        • 1




          $begingroup$
          Is that better?
          $endgroup$
          – Maria Mazur
          Jan 27 at 14:52






        • 1




          $begingroup$
          What about now?
          $endgroup$
          – Maria Mazur
          Jan 27 at 15:51






        • 1




          $begingroup$
          Just put first and last expression on one side, so you get 0 on other side
          $endgroup$
          – Maria Mazur
          Jan 27 at 16:54











        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089539%2fsolve-recursion-a-n-a-n-1-6-cdot3n-1-for-n0-a-0-0%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        You have
        $$a_n=a_n=a_{n-1}-6cdot 3^{n-1}=a_{n-2}-6cdot 3^{n-2}-6cdot 3^{n-1}=dotsm,$$
        so you can prove with an easy induction that
        $$a_n = a_0-6sum_{k=0}^{n-1} 3^k=-6frac{3^n-1}{3-1}.$$






        share|cite|improve this answer









        $endgroup$


















          2












          $begingroup$

          You have
          $$a_n=a_n=a_{n-1}-6cdot 3^{n-1}=a_{n-2}-6cdot 3^{n-2}-6cdot 3^{n-1}=dotsm,$$
          so you can prove with an easy induction that
          $$a_n = a_0-6sum_{k=0}^{n-1} 3^k=-6frac{3^n-1}{3-1}.$$






          share|cite|improve this answer









          $endgroup$
















            2












            2








            2





            $begingroup$

            You have
            $$a_n=a_n=a_{n-1}-6cdot 3^{n-1}=a_{n-2}-6cdot 3^{n-2}-6cdot 3^{n-1}=dotsm,$$
            so you can prove with an easy induction that
            $$a_n = a_0-6sum_{k=0}^{n-1} 3^k=-6frac{3^n-1}{3-1}.$$






            share|cite|improve this answer









            $endgroup$



            You have
            $$a_n=a_n=a_{n-1}-6cdot 3^{n-1}=a_{n-2}-6cdot 3^{n-2}-6cdot 3^{n-1}=dotsm,$$
            so you can prove with an easy induction that
            $$a_n = a_0-6sum_{k=0}^{n-1} 3^k=-6frac{3^n-1}{3-1}.$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 27 at 13:19









            BernardBernard

            123k741117




            123k741117























                2












                $begingroup$

                hint...consider $$sum_{r=0}^{r=n}(a_{r+1}-a_r)=sum_{r=0}^{r=n}-6cdot3^r$$



                The LHS is a telescoping series and the RHS is a geometric series.






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  hint...consider $$sum_{r=0}^{r=n}(a_{r+1}-a_r)=sum_{r=0}^{r=n}-6cdot3^r$$



                  The LHS is a telescoping series and the RHS is a geometric series.






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    hint...consider $$sum_{r=0}^{r=n}(a_{r+1}-a_r)=sum_{r=0}^{r=n}-6cdot3^r$$



                    The LHS is a telescoping series and the RHS is a geometric series.






                    share|cite|improve this answer









                    $endgroup$



                    hint...consider $$sum_{r=0}^{r=n}(a_{r+1}-a_r)=sum_{r=0}^{r=n}-6cdot3^r$$



                    The LHS is a telescoping series and the RHS is a geometric series.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 27 at 13:20









                    David QuinnDavid Quinn

                    24.1k21141




                    24.1k21141























                        1












                        $begingroup$

                        This is just a Geometric Series:



                        $$a_n=-6sum_{i=1}^n3^{i-1}=-6sum_{i=0}^{n-1}3^i=-6times frac {3^n-1}{3-1}=-3times (3^n-1)$$






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          This is just a Geometric Series:



                          $$a_n=-6sum_{i=1}^n3^{i-1}=-6sum_{i=0}^{n-1}3^i=-6times frac {3^n-1}{3-1}=-3times (3^n-1)$$






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            This is just a Geometric Series:



                            $$a_n=-6sum_{i=1}^n3^{i-1}=-6sum_{i=0}^{n-1}3^i=-6times frac {3^n-1}{3-1}=-3times (3^n-1)$$






                            share|cite|improve this answer









                            $endgroup$



                            This is just a Geometric Series:



                            $$a_n=-6sum_{i=1}^n3^{i-1}=-6sum_{i=0}^{n-1}3^i=-6times frac {3^n-1}{3-1}=-3times (3^n-1)$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 27 at 13:14









                            lulululu

                            43.2k25080




                            43.2k25080























                                1












                                $begingroup$

                                Note that for all $n$ we have $$a_{n+1}-a_n = -6cdot 3^n $$



                                so we have also: $$a_n-a_{n-1}=-6cdot3^{n-1}$$



                                thus $$a_{n+1}-a_n = 3(-6cdot3^{n-1}) = 3(a_n-a_{n-1})$$



                                {or divide this two equations: $${a_{n+1}-a_n over a_n-a_{n-1}}= {-6cdot 3^nover -6cdot3^{n-1}} = 3$$}



                                so you have to solve linear recurrence:



                                $$ a_{n+1}-4a_n+3a_{n-1}=0$$



                                CAn you do that?






                                share|cite|improve this answer











                                $endgroup$













                                • $begingroup$
                                  ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
                                  $endgroup$
                                  – Gorosso
                                  Jan 27 at 14:40








                                • 1




                                  $begingroup$
                                  Yes, that is correct!
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 14:40






                                • 1




                                  $begingroup$
                                  Is that better?
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 14:52






                                • 1




                                  $begingroup$
                                  What about now?
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 15:51






                                • 1




                                  $begingroup$
                                  Just put first and last expression on one side, so you get 0 on other side
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 16:54
















                                1












                                $begingroup$

                                Note that for all $n$ we have $$a_{n+1}-a_n = -6cdot 3^n $$



                                so we have also: $$a_n-a_{n-1}=-6cdot3^{n-1}$$



                                thus $$a_{n+1}-a_n = 3(-6cdot3^{n-1}) = 3(a_n-a_{n-1})$$



                                {or divide this two equations: $${a_{n+1}-a_n over a_n-a_{n-1}}= {-6cdot 3^nover -6cdot3^{n-1}} = 3$$}



                                so you have to solve linear recurrence:



                                $$ a_{n+1}-4a_n+3a_{n-1}=0$$



                                CAn you do that?






                                share|cite|improve this answer











                                $endgroup$













                                • $begingroup$
                                  ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
                                  $endgroup$
                                  – Gorosso
                                  Jan 27 at 14:40








                                • 1




                                  $begingroup$
                                  Yes, that is correct!
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 14:40






                                • 1




                                  $begingroup$
                                  Is that better?
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 14:52






                                • 1




                                  $begingroup$
                                  What about now?
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 15:51






                                • 1




                                  $begingroup$
                                  Just put first and last expression on one side, so you get 0 on other side
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 16:54














                                1












                                1








                                1





                                $begingroup$

                                Note that for all $n$ we have $$a_{n+1}-a_n = -6cdot 3^n $$



                                so we have also: $$a_n-a_{n-1}=-6cdot3^{n-1}$$



                                thus $$a_{n+1}-a_n = 3(-6cdot3^{n-1}) = 3(a_n-a_{n-1})$$



                                {or divide this two equations: $${a_{n+1}-a_n over a_n-a_{n-1}}= {-6cdot 3^nover -6cdot3^{n-1}} = 3$$}



                                so you have to solve linear recurrence:



                                $$ a_{n+1}-4a_n+3a_{n-1}=0$$



                                CAn you do that?






                                share|cite|improve this answer











                                $endgroup$



                                Note that for all $n$ we have $$a_{n+1}-a_n = -6cdot 3^n $$



                                so we have also: $$a_n-a_{n-1}=-6cdot3^{n-1}$$



                                thus $$a_{n+1}-a_n = 3(-6cdot3^{n-1}) = 3(a_n-a_{n-1})$$



                                {or divide this two equations: $${a_{n+1}-a_n over a_n-a_{n-1}}= {-6cdot 3^nover -6cdot3^{n-1}} = 3$$}



                                so you have to solve linear recurrence:



                                $$ a_{n+1}-4a_n+3a_{n-1}=0$$



                                CAn you do that?







                                share|cite|improve this answer














                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited Jan 27 at 15:51

























                                answered Jan 27 at 13:12









                                Maria MazurMaria Mazur

                                48.3k1260121




                                48.3k1260121












                                • $begingroup$
                                  ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
                                  $endgroup$
                                  – Gorosso
                                  Jan 27 at 14:40








                                • 1




                                  $begingroup$
                                  Yes, that is correct!
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 14:40






                                • 1




                                  $begingroup$
                                  Is that better?
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 14:52






                                • 1




                                  $begingroup$
                                  What about now?
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 15:51






                                • 1




                                  $begingroup$
                                  Just put first and last expression on one side, so you get 0 on other side
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 16:54


















                                • $begingroup$
                                  ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
                                  $endgroup$
                                  – Gorosso
                                  Jan 27 at 14:40








                                • 1




                                  $begingroup$
                                  Yes, that is correct!
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 14:40






                                • 1




                                  $begingroup$
                                  Is that better?
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 14:52






                                • 1




                                  $begingroup$
                                  What about now?
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 15:51






                                • 1




                                  $begingroup$
                                  Just put first and last expression on one side, so you get 0 on other side
                                  $endgroup$
                                  – Maria Mazur
                                  Jan 27 at 16:54
















                                $begingroup$
                                ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
                                $endgroup$
                                – Gorosso
                                Jan 27 at 14:40






                                $begingroup$
                                ok so: $x^{2}-4x+3$ $Delta =4$ $x1=1$ $x2=3$ Now I use following formula $a_n=ar^{n}+br^{n}$ $a_0=0=a+b$ $a_1=-6=a+3b$ $a=-b$ $-6=2b$ $b=-3$ $a=3$ $a_n=3*1^{n}-3*3^{n}$
                                $endgroup$
                                – Gorosso
                                Jan 27 at 14:40






                                1




                                1




                                $begingroup$
                                Yes, that is correct!
                                $endgroup$
                                – Maria Mazur
                                Jan 27 at 14:40




                                $begingroup$
                                Yes, that is correct!
                                $endgroup$
                                – Maria Mazur
                                Jan 27 at 14:40




                                1




                                1




                                $begingroup$
                                Is that better?
                                $endgroup$
                                – Maria Mazur
                                Jan 27 at 14:52




                                $begingroup$
                                Is that better?
                                $endgroup$
                                – Maria Mazur
                                Jan 27 at 14:52




                                1




                                1




                                $begingroup$
                                What about now?
                                $endgroup$
                                – Maria Mazur
                                Jan 27 at 15:51




                                $begingroup$
                                What about now?
                                $endgroup$
                                – Maria Mazur
                                Jan 27 at 15:51




                                1




                                1




                                $begingroup$
                                Just put first and last expression on one side, so you get 0 on other side
                                $endgroup$
                                – Maria Mazur
                                Jan 27 at 16:54




                                $begingroup$
                                Just put first and last expression on one side, so you get 0 on other side
                                $endgroup$
                                – Maria Mazur
                                Jan 27 at 16:54


















                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089539%2fsolve-recursion-a-n-a-n-1-6-cdot3n-1-for-n0-a-0-0%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                How to fix TextFormField cause rebuild widget in Flutter

                                in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith