The Integral $int frac {dx}{(x^2-2ax+b)^n}$












1












$begingroup$


Recently I came across this general integral,
$$int frac {dx}{(x^2-2ax+b)^n}$$
Putting $x^2-2ax+b=0$ we have,
$$x = a±sqrt {a^2-b} = a±sqrt {∆}$$
Hence the integrand can be written as,
$$
frac {1}{(x^2-2ax+b)^n}
=
frac {1}{(x-a-sqrt ∆)^n(x-a+sqrt ∆)^n}
$$

Resolving into partial fractions we have,
$$
frac {1}{(x^2-2ax+b)^n}
=
sum frac {A_r}{(x-a-sqrt ∆)^r} + sum frac {B_r}{(x-a+sqrt ∆)^r}
$$

Putting $-frac {1}{2sqrt ∆} = D$ , I could produce a table of the coefficients $A$ and $B$ for different $n$.
par
For $n=1$,
$$A_1=-D , B_1=D$$
For $n=2$,
$$A_1=2D^3 , B_1=-2D^3$$
$$A_2=D^2 , B_2 = D^2$$
For $n=3$,
$$A_1=-6D^5 , B_1=6D^5$$
$$A_2=-3D^4 , B_2 = -3D^4$$
$$A_3=-D^3, B_3=D^3$$
For $n=4$,
$$A_1=20D^7, B_1=-20D^7$$
$$A_2=10D^6 , B_2 = 10D^6$$
$$A_3=4D^5, B_3=-4D^5$$
$$A_4=D^4, B_4=D^4$$
For $n=5$,
$$A_1=-70D^9, B_1=70D^9$$
$$A_2=-35D^8, B_2 = -35D^8$$
$$A_3=-15D^7, B_3=15D^7$$
$$A_4=-5D^6, B_4=-5D^6$$
$$A_5=-D^5, B_4=D^5$$
Yet I am unable to deduce a general formula for the coefficients. If I have the coefficients, the integral is almost solved , for then I shall have a logarithmic term and a rational function in $x$. More directly, I seek a result of the form,
$$kappa log left( frac {x-a-sqrt ∆}{x-a+sqrt ∆}right) + frac {P(x)}{Q(x)}$$
Any help would be greatly appreciated.



Conjecture 1(Proved below)



$$A(n,r)= (-1)^n binom {2n-r-1}{n-1} D^{2n-r}$$
$$B(n,r)= (-1)^{n-r} binom {2n-r-1}{n-1} D^{2n-r}$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    The notation $;Delta;$ is usually connected to the discriminant of a quadratic equation. In your case, it'd be $;x_{1,2}=apmsqrtDelta;$...which leads to the second comment: what if $;Delta<0;$ ? Then you have two complex non-real roots...
    $endgroup$
    – DonAntonio
    Jan 25 at 8:46












  • $begingroup$
    The decomposition still makes sense for negative discriminant - it'll just lead to an answer in complex form.
    $endgroup$
    – jmerry
    Jan 25 at 8:49










  • $begingroup$
    @DonAntonio, As for the notation I have amended it, as for the sign of the discriminant , in case it is negative the logarithmic term with imaginary argument can be written as inverse sine function.
    $endgroup$
    – Awe Kumar Jha
    Jan 25 at 9:15










  • $begingroup$
    $frac{A_k}{B_k} = (-1)^k$ for $k = 1,...,n$ except when n = 3. Are the signs right in that case for k = 2, 3?
    $endgroup$
    – Paul
    Jan 25 at 9:18






  • 2




    $begingroup$
    A conjecture: $A(n,k)=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ and $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. It fits the data given (with the corrected signs). No full solution yet, and I feel like moving on to something else for a while.
    $endgroup$
    – jmerry
    Jan 25 at 9:46
















1












$begingroup$


Recently I came across this general integral,
$$int frac {dx}{(x^2-2ax+b)^n}$$
Putting $x^2-2ax+b=0$ we have,
$$x = a±sqrt {a^2-b} = a±sqrt {∆}$$
Hence the integrand can be written as,
$$
frac {1}{(x^2-2ax+b)^n}
=
frac {1}{(x-a-sqrt ∆)^n(x-a+sqrt ∆)^n}
$$

Resolving into partial fractions we have,
$$
frac {1}{(x^2-2ax+b)^n}
=
sum frac {A_r}{(x-a-sqrt ∆)^r} + sum frac {B_r}{(x-a+sqrt ∆)^r}
$$

Putting $-frac {1}{2sqrt ∆} = D$ , I could produce a table of the coefficients $A$ and $B$ for different $n$.
par
For $n=1$,
$$A_1=-D , B_1=D$$
For $n=2$,
$$A_1=2D^3 , B_1=-2D^3$$
$$A_2=D^2 , B_2 = D^2$$
For $n=3$,
$$A_1=-6D^5 , B_1=6D^5$$
$$A_2=-3D^4 , B_2 = -3D^4$$
$$A_3=-D^3, B_3=D^3$$
For $n=4$,
$$A_1=20D^7, B_1=-20D^7$$
$$A_2=10D^6 , B_2 = 10D^6$$
$$A_3=4D^5, B_3=-4D^5$$
$$A_4=D^4, B_4=D^4$$
For $n=5$,
$$A_1=-70D^9, B_1=70D^9$$
$$A_2=-35D^8, B_2 = -35D^8$$
$$A_3=-15D^7, B_3=15D^7$$
$$A_4=-5D^6, B_4=-5D^6$$
$$A_5=-D^5, B_4=D^5$$
Yet I am unable to deduce a general formula for the coefficients. If I have the coefficients, the integral is almost solved , for then I shall have a logarithmic term and a rational function in $x$. More directly, I seek a result of the form,
$$kappa log left( frac {x-a-sqrt ∆}{x-a+sqrt ∆}right) + frac {P(x)}{Q(x)}$$
Any help would be greatly appreciated.



Conjecture 1(Proved below)



$$A(n,r)= (-1)^n binom {2n-r-1}{n-1} D^{2n-r}$$
$$B(n,r)= (-1)^{n-r} binom {2n-r-1}{n-1} D^{2n-r}$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    The notation $;Delta;$ is usually connected to the discriminant of a quadratic equation. In your case, it'd be $;x_{1,2}=apmsqrtDelta;$...which leads to the second comment: what if $;Delta<0;$ ? Then you have two complex non-real roots...
    $endgroup$
    – DonAntonio
    Jan 25 at 8:46












  • $begingroup$
    The decomposition still makes sense for negative discriminant - it'll just lead to an answer in complex form.
    $endgroup$
    – jmerry
    Jan 25 at 8:49










  • $begingroup$
    @DonAntonio, As for the notation I have amended it, as for the sign of the discriminant , in case it is negative the logarithmic term with imaginary argument can be written as inverse sine function.
    $endgroup$
    – Awe Kumar Jha
    Jan 25 at 9:15










  • $begingroup$
    $frac{A_k}{B_k} = (-1)^k$ for $k = 1,...,n$ except when n = 3. Are the signs right in that case for k = 2, 3?
    $endgroup$
    – Paul
    Jan 25 at 9:18






  • 2




    $begingroup$
    A conjecture: $A(n,k)=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ and $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. It fits the data given (with the corrected signs). No full solution yet, and I feel like moving on to something else for a while.
    $endgroup$
    – jmerry
    Jan 25 at 9:46














1












1








1





$begingroup$


Recently I came across this general integral,
$$int frac {dx}{(x^2-2ax+b)^n}$$
Putting $x^2-2ax+b=0$ we have,
$$x = a±sqrt {a^2-b} = a±sqrt {∆}$$
Hence the integrand can be written as,
$$
frac {1}{(x^2-2ax+b)^n}
=
frac {1}{(x-a-sqrt ∆)^n(x-a+sqrt ∆)^n}
$$

Resolving into partial fractions we have,
$$
frac {1}{(x^2-2ax+b)^n}
=
sum frac {A_r}{(x-a-sqrt ∆)^r} + sum frac {B_r}{(x-a+sqrt ∆)^r}
$$

Putting $-frac {1}{2sqrt ∆} = D$ , I could produce a table of the coefficients $A$ and $B$ for different $n$.
par
For $n=1$,
$$A_1=-D , B_1=D$$
For $n=2$,
$$A_1=2D^3 , B_1=-2D^3$$
$$A_2=D^2 , B_2 = D^2$$
For $n=3$,
$$A_1=-6D^5 , B_1=6D^5$$
$$A_2=-3D^4 , B_2 = -3D^4$$
$$A_3=-D^3, B_3=D^3$$
For $n=4$,
$$A_1=20D^7, B_1=-20D^7$$
$$A_2=10D^6 , B_2 = 10D^6$$
$$A_3=4D^5, B_3=-4D^5$$
$$A_4=D^4, B_4=D^4$$
For $n=5$,
$$A_1=-70D^9, B_1=70D^9$$
$$A_2=-35D^8, B_2 = -35D^8$$
$$A_3=-15D^7, B_3=15D^7$$
$$A_4=-5D^6, B_4=-5D^6$$
$$A_5=-D^5, B_4=D^5$$
Yet I am unable to deduce a general formula for the coefficients. If I have the coefficients, the integral is almost solved , for then I shall have a logarithmic term and a rational function in $x$. More directly, I seek a result of the form,
$$kappa log left( frac {x-a-sqrt ∆}{x-a+sqrt ∆}right) + frac {P(x)}{Q(x)}$$
Any help would be greatly appreciated.



Conjecture 1(Proved below)



$$A(n,r)= (-1)^n binom {2n-r-1}{n-1} D^{2n-r}$$
$$B(n,r)= (-1)^{n-r} binom {2n-r-1}{n-1} D^{2n-r}$$










share|cite|improve this question











$endgroup$




Recently I came across this general integral,
$$int frac {dx}{(x^2-2ax+b)^n}$$
Putting $x^2-2ax+b=0$ we have,
$$x = a±sqrt {a^2-b} = a±sqrt {∆}$$
Hence the integrand can be written as,
$$
frac {1}{(x^2-2ax+b)^n}
=
frac {1}{(x-a-sqrt ∆)^n(x-a+sqrt ∆)^n}
$$

Resolving into partial fractions we have,
$$
frac {1}{(x^2-2ax+b)^n}
=
sum frac {A_r}{(x-a-sqrt ∆)^r} + sum frac {B_r}{(x-a+sqrt ∆)^r}
$$

Putting $-frac {1}{2sqrt ∆} = D$ , I could produce a table of the coefficients $A$ and $B$ for different $n$.
par
For $n=1$,
$$A_1=-D , B_1=D$$
For $n=2$,
$$A_1=2D^3 , B_1=-2D^3$$
$$A_2=D^2 , B_2 = D^2$$
For $n=3$,
$$A_1=-6D^5 , B_1=6D^5$$
$$A_2=-3D^4 , B_2 = -3D^4$$
$$A_3=-D^3, B_3=D^3$$
For $n=4$,
$$A_1=20D^7, B_1=-20D^7$$
$$A_2=10D^6 , B_2 = 10D^6$$
$$A_3=4D^5, B_3=-4D^5$$
$$A_4=D^4, B_4=D^4$$
For $n=5$,
$$A_1=-70D^9, B_1=70D^9$$
$$A_2=-35D^8, B_2 = -35D^8$$
$$A_3=-15D^7, B_3=15D^7$$
$$A_4=-5D^6, B_4=-5D^6$$
$$A_5=-D^5, B_4=D^5$$
Yet I am unable to deduce a general formula for the coefficients. If I have the coefficients, the integral is almost solved , for then I shall have a logarithmic term and a rational function in $x$. More directly, I seek a result of the form,
$$kappa log left( frac {x-a-sqrt ∆}{x-a+sqrt ∆}right) + frac {P(x)}{Q(x)}$$
Any help would be greatly appreciated.



Conjecture 1(Proved below)



$$A(n,r)= (-1)^n binom {2n-r-1}{n-1} D^{2n-r}$$
$$B(n,r)= (-1)^{n-r} binom {2n-r-1}{n-1} D^{2n-r}$$







calculus indefinite-integrals partial-fractions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 26 at 4:00







Awe Kumar Jha

















asked Jan 25 at 8:39









Awe Kumar JhaAwe Kumar Jha

516113




516113












  • $begingroup$
    The notation $;Delta;$ is usually connected to the discriminant of a quadratic equation. In your case, it'd be $;x_{1,2}=apmsqrtDelta;$...which leads to the second comment: what if $;Delta<0;$ ? Then you have two complex non-real roots...
    $endgroup$
    – DonAntonio
    Jan 25 at 8:46












  • $begingroup$
    The decomposition still makes sense for negative discriminant - it'll just lead to an answer in complex form.
    $endgroup$
    – jmerry
    Jan 25 at 8:49










  • $begingroup$
    @DonAntonio, As for the notation I have amended it, as for the sign of the discriminant , in case it is negative the logarithmic term with imaginary argument can be written as inverse sine function.
    $endgroup$
    – Awe Kumar Jha
    Jan 25 at 9:15










  • $begingroup$
    $frac{A_k}{B_k} = (-1)^k$ for $k = 1,...,n$ except when n = 3. Are the signs right in that case for k = 2, 3?
    $endgroup$
    – Paul
    Jan 25 at 9:18






  • 2




    $begingroup$
    A conjecture: $A(n,k)=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ and $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. It fits the data given (with the corrected signs). No full solution yet, and I feel like moving on to something else for a while.
    $endgroup$
    – jmerry
    Jan 25 at 9:46


















  • $begingroup$
    The notation $;Delta;$ is usually connected to the discriminant of a quadratic equation. In your case, it'd be $;x_{1,2}=apmsqrtDelta;$...which leads to the second comment: what if $;Delta<0;$ ? Then you have two complex non-real roots...
    $endgroup$
    – DonAntonio
    Jan 25 at 8:46












  • $begingroup$
    The decomposition still makes sense for negative discriminant - it'll just lead to an answer in complex form.
    $endgroup$
    – jmerry
    Jan 25 at 8:49










  • $begingroup$
    @DonAntonio, As for the notation I have amended it, as for the sign of the discriminant , in case it is negative the logarithmic term with imaginary argument can be written as inverse sine function.
    $endgroup$
    – Awe Kumar Jha
    Jan 25 at 9:15










  • $begingroup$
    $frac{A_k}{B_k} = (-1)^k$ for $k = 1,...,n$ except when n = 3. Are the signs right in that case for k = 2, 3?
    $endgroup$
    – Paul
    Jan 25 at 9:18






  • 2




    $begingroup$
    A conjecture: $A(n,k)=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ and $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. It fits the data given (with the corrected signs). No full solution yet, and I feel like moving on to something else for a while.
    $endgroup$
    – jmerry
    Jan 25 at 9:46
















$begingroup$
The notation $;Delta;$ is usually connected to the discriminant of a quadratic equation. In your case, it'd be $;x_{1,2}=apmsqrtDelta;$...which leads to the second comment: what if $;Delta<0;$ ? Then you have two complex non-real roots...
$endgroup$
– DonAntonio
Jan 25 at 8:46






$begingroup$
The notation $;Delta;$ is usually connected to the discriminant of a quadratic equation. In your case, it'd be $;x_{1,2}=apmsqrtDelta;$...which leads to the second comment: what if $;Delta<0;$ ? Then you have two complex non-real roots...
$endgroup$
– DonAntonio
Jan 25 at 8:46














$begingroup$
The decomposition still makes sense for negative discriminant - it'll just lead to an answer in complex form.
$endgroup$
– jmerry
Jan 25 at 8:49




$begingroup$
The decomposition still makes sense for negative discriminant - it'll just lead to an answer in complex form.
$endgroup$
– jmerry
Jan 25 at 8:49












$begingroup$
@DonAntonio, As for the notation I have amended it, as for the sign of the discriminant , in case it is negative the logarithmic term with imaginary argument can be written as inverse sine function.
$endgroup$
– Awe Kumar Jha
Jan 25 at 9:15




$begingroup$
@DonAntonio, As for the notation I have amended it, as for the sign of the discriminant , in case it is negative the logarithmic term with imaginary argument can be written as inverse sine function.
$endgroup$
– Awe Kumar Jha
Jan 25 at 9:15












$begingroup$
$frac{A_k}{B_k} = (-1)^k$ for $k = 1,...,n$ except when n = 3. Are the signs right in that case for k = 2, 3?
$endgroup$
– Paul
Jan 25 at 9:18




$begingroup$
$frac{A_k}{B_k} = (-1)^k$ for $k = 1,...,n$ except when n = 3. Are the signs right in that case for k = 2, 3?
$endgroup$
– Paul
Jan 25 at 9:18




2




2




$begingroup$
A conjecture: $A(n,k)=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ and $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. It fits the data given (with the corrected signs). No full solution yet, and I feel like moving on to something else for a while.
$endgroup$
– jmerry
Jan 25 at 9:46




$begingroup$
A conjecture: $A(n,k)=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ and $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. It fits the data given (with the corrected signs). No full solution yet, and I feel like moving on to something else for a while.
$endgroup$
– jmerry
Jan 25 at 9:46










2 Answers
2






active

oldest

votes


















2












$begingroup$

All right, now I've got it.



The easiest way to get all the coefficients? Expand in a Laurent series around one of the roots. Substituting $z=x-a-sqrt{Delta}$ and later defining $D=frac1{2sqrt{Delta}}$, we get
begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{z^n(z+2sqrt{Delta})^n}=frac1{z^n}cdotfrac{(2sqrt{Delta})^{-n}}{(1+frac{z}{2sqrt{Delta}})^n}\
frac1{(x^2-2ax+b)^n} &= frac{(-D)^n}{z^n(1-Dz)^n} = frac{(-D)^n}{z^n}sum_{j=0}^{infty} binom{n+j-1}{j}D^jz^j\
&=(-1)^nsum_{j=0}^{infty}binom{n+j-1}{j}D^{n+j}z^{j-n}end{align*}

We claim that the coefficients $(-1)^nbinom{n+j-1}{j}D^{n+j}$ for $j<n$ are precisely the coefficients of $frac1{z^{n-j}}$ in the partial fractions expansion of $frac1{z^n(z+2sqrt{delta})^n}$. Why? Subtract the negative-exponent terms of the Laurent series from the partial fractions expansion. The difference is locally bounded, with a nice power series. But then, the only terms in the partial fractions expansion that aren't locally bounded are the $frac1{z^k}$ terms - so their coefficients all have to match with the terms from the Laurent series.



Let $k=n-j$, and we get $A(n,k)=(-1)^nbinom{2n-k-1}{n-k}D^{2n-k}=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ in the partial fractions expansion
$$frac1{z^n(z+2sqrt{Delta})^n}=sum_{k=1}^n frac{A(n,k)}{z^k} +sum_{k=1}^n frac{B(n,k)}{(z+2sqrt{Delta})^k}=sum_{k=1}^n frac{A(n,k)}{(x-a-sqrt{Delta})^k} +sum_{k=1}^n frac{B(n,k)}{(x-a+sqrt{Delta})^k}$$
Oh, yes - in my comment, I didn't actually define my notation, and the update to the question imported that without defining it. The purpose is clear; we're just putting both parameters in the notation instead of just the power $k$ of $frac1{z-apmsqrt{Delta}}$. Formally, the definition is the line just above.



That's half of the conjecture. For the other half, we expand around the other root.
begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{(w-2sqrt{Delta})^nw^n}=frac1{w^n}cdotfrac{(-2sqrt{Delta})^{-n}}{(1-frac{w}{2sqrt{Delta}})^n}\
frac1{(x^2-2ax+b)^n} &= frac{D^n}{w^n(1+Dw)^n} = frac{D^n}{w^n}sum_{j=0}^{infty} binom{n+j-1}{j}(-D)^jw^j\
&=sum_{j=0}^{infty}(-1)^jbinom{n+j-1}{j}D^{n+j}w^{j-n}end{align*}

Again, extract the negative-exponent terms to get $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-k}D^{2n-k} =(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. The conjecture is confirmed, and we have our general formula.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Let $bneq a^2$,
    $$S(n)=int frac {dx}{(x^2-2ax+b)^n}$$
    With method of undetermined coefficients we find formula
    $$S(n)=frac{Ax+B}{(x^2-2ax+b)^{n-1}}+CS(n-1)$$
    We get
    $$1=-left( 2 A n-C-3 Aright) , {{x}^{2}}-left( left( 2 B-2 A aright) n+left( 2 C+4 Aright) a-2 Bright) x\+2 B a n-left( -C-Aright) b-2 B a$$
    $$A=frac{1}{2 left( b-{{a}^{2}}right) , left( n-1right) },B=-frac{a}{2 left( b-{{a}^{2}}right) , left( n-1right) },\C=frac{2 n-3}{2 left( b-{{a}^{2}}right) , left( n-1right) }$$
    Then
    $$S(n)=frac{x-a}{2(n-1)(b-a^2)(x^2-2ax+b)^{n-1}}+
    frac{2n-3}{2(n-1)(b-a^2)}S(n-1), ; n>1$$

    $$S(1)=int frac {dx}{x^2-2ax+b}$$






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
      $endgroup$
      – Maxim
      Jan 25 at 14:56










    • $begingroup$
      @Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
      $endgroup$
      – Awe Kumar Jha
      Jan 26 at 4:12











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086878%2fthe-integral-int-frac-dxx2-2axbn%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    All right, now I've got it.



    The easiest way to get all the coefficients? Expand in a Laurent series around one of the roots. Substituting $z=x-a-sqrt{Delta}$ and later defining $D=frac1{2sqrt{Delta}}$, we get
    begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{z^n(z+2sqrt{Delta})^n}=frac1{z^n}cdotfrac{(2sqrt{Delta})^{-n}}{(1+frac{z}{2sqrt{Delta}})^n}\
    frac1{(x^2-2ax+b)^n} &= frac{(-D)^n}{z^n(1-Dz)^n} = frac{(-D)^n}{z^n}sum_{j=0}^{infty} binom{n+j-1}{j}D^jz^j\
    &=(-1)^nsum_{j=0}^{infty}binom{n+j-1}{j}D^{n+j}z^{j-n}end{align*}

    We claim that the coefficients $(-1)^nbinom{n+j-1}{j}D^{n+j}$ for $j<n$ are precisely the coefficients of $frac1{z^{n-j}}$ in the partial fractions expansion of $frac1{z^n(z+2sqrt{delta})^n}$. Why? Subtract the negative-exponent terms of the Laurent series from the partial fractions expansion. The difference is locally bounded, with a nice power series. But then, the only terms in the partial fractions expansion that aren't locally bounded are the $frac1{z^k}$ terms - so their coefficients all have to match with the terms from the Laurent series.



    Let $k=n-j$, and we get $A(n,k)=(-1)^nbinom{2n-k-1}{n-k}D^{2n-k}=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ in the partial fractions expansion
    $$frac1{z^n(z+2sqrt{Delta})^n}=sum_{k=1}^n frac{A(n,k)}{z^k} +sum_{k=1}^n frac{B(n,k)}{(z+2sqrt{Delta})^k}=sum_{k=1}^n frac{A(n,k)}{(x-a-sqrt{Delta})^k} +sum_{k=1}^n frac{B(n,k)}{(x-a+sqrt{Delta})^k}$$
    Oh, yes - in my comment, I didn't actually define my notation, and the update to the question imported that without defining it. The purpose is clear; we're just putting both parameters in the notation instead of just the power $k$ of $frac1{z-apmsqrt{Delta}}$. Formally, the definition is the line just above.



    That's half of the conjecture. For the other half, we expand around the other root.
    begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{(w-2sqrt{Delta})^nw^n}=frac1{w^n}cdotfrac{(-2sqrt{Delta})^{-n}}{(1-frac{w}{2sqrt{Delta}})^n}\
    frac1{(x^2-2ax+b)^n} &= frac{D^n}{w^n(1+Dw)^n} = frac{D^n}{w^n}sum_{j=0}^{infty} binom{n+j-1}{j}(-D)^jw^j\
    &=sum_{j=0}^{infty}(-1)^jbinom{n+j-1}{j}D^{n+j}w^{j-n}end{align*}

    Again, extract the negative-exponent terms to get $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-k}D^{2n-k} =(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. The conjecture is confirmed, and we have our general formula.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      All right, now I've got it.



      The easiest way to get all the coefficients? Expand in a Laurent series around one of the roots. Substituting $z=x-a-sqrt{Delta}$ and later defining $D=frac1{2sqrt{Delta}}$, we get
      begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{z^n(z+2sqrt{Delta})^n}=frac1{z^n}cdotfrac{(2sqrt{Delta})^{-n}}{(1+frac{z}{2sqrt{Delta}})^n}\
      frac1{(x^2-2ax+b)^n} &= frac{(-D)^n}{z^n(1-Dz)^n} = frac{(-D)^n}{z^n}sum_{j=0}^{infty} binom{n+j-1}{j}D^jz^j\
      &=(-1)^nsum_{j=0}^{infty}binom{n+j-1}{j}D^{n+j}z^{j-n}end{align*}

      We claim that the coefficients $(-1)^nbinom{n+j-1}{j}D^{n+j}$ for $j<n$ are precisely the coefficients of $frac1{z^{n-j}}$ in the partial fractions expansion of $frac1{z^n(z+2sqrt{delta})^n}$. Why? Subtract the negative-exponent terms of the Laurent series from the partial fractions expansion. The difference is locally bounded, with a nice power series. But then, the only terms in the partial fractions expansion that aren't locally bounded are the $frac1{z^k}$ terms - so their coefficients all have to match with the terms from the Laurent series.



      Let $k=n-j$, and we get $A(n,k)=(-1)^nbinom{2n-k-1}{n-k}D^{2n-k}=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ in the partial fractions expansion
      $$frac1{z^n(z+2sqrt{Delta})^n}=sum_{k=1}^n frac{A(n,k)}{z^k} +sum_{k=1}^n frac{B(n,k)}{(z+2sqrt{Delta})^k}=sum_{k=1}^n frac{A(n,k)}{(x-a-sqrt{Delta})^k} +sum_{k=1}^n frac{B(n,k)}{(x-a+sqrt{Delta})^k}$$
      Oh, yes - in my comment, I didn't actually define my notation, and the update to the question imported that without defining it. The purpose is clear; we're just putting both parameters in the notation instead of just the power $k$ of $frac1{z-apmsqrt{Delta}}$. Formally, the definition is the line just above.



      That's half of the conjecture. For the other half, we expand around the other root.
      begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{(w-2sqrt{Delta})^nw^n}=frac1{w^n}cdotfrac{(-2sqrt{Delta})^{-n}}{(1-frac{w}{2sqrt{Delta}})^n}\
      frac1{(x^2-2ax+b)^n} &= frac{D^n}{w^n(1+Dw)^n} = frac{D^n}{w^n}sum_{j=0}^{infty} binom{n+j-1}{j}(-D)^jw^j\
      &=sum_{j=0}^{infty}(-1)^jbinom{n+j-1}{j}D^{n+j}w^{j-n}end{align*}

      Again, extract the negative-exponent terms to get $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-k}D^{2n-k} =(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. The conjecture is confirmed, and we have our general formula.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        All right, now I've got it.



        The easiest way to get all the coefficients? Expand in a Laurent series around one of the roots. Substituting $z=x-a-sqrt{Delta}$ and later defining $D=frac1{2sqrt{Delta}}$, we get
        begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{z^n(z+2sqrt{Delta})^n}=frac1{z^n}cdotfrac{(2sqrt{Delta})^{-n}}{(1+frac{z}{2sqrt{Delta}})^n}\
        frac1{(x^2-2ax+b)^n} &= frac{(-D)^n}{z^n(1-Dz)^n} = frac{(-D)^n}{z^n}sum_{j=0}^{infty} binom{n+j-1}{j}D^jz^j\
        &=(-1)^nsum_{j=0}^{infty}binom{n+j-1}{j}D^{n+j}z^{j-n}end{align*}

        We claim that the coefficients $(-1)^nbinom{n+j-1}{j}D^{n+j}$ for $j<n$ are precisely the coefficients of $frac1{z^{n-j}}$ in the partial fractions expansion of $frac1{z^n(z+2sqrt{delta})^n}$. Why? Subtract the negative-exponent terms of the Laurent series from the partial fractions expansion. The difference is locally bounded, with a nice power series. But then, the only terms in the partial fractions expansion that aren't locally bounded are the $frac1{z^k}$ terms - so their coefficients all have to match with the terms from the Laurent series.



        Let $k=n-j$, and we get $A(n,k)=(-1)^nbinom{2n-k-1}{n-k}D^{2n-k}=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ in the partial fractions expansion
        $$frac1{z^n(z+2sqrt{Delta})^n}=sum_{k=1}^n frac{A(n,k)}{z^k} +sum_{k=1}^n frac{B(n,k)}{(z+2sqrt{Delta})^k}=sum_{k=1}^n frac{A(n,k)}{(x-a-sqrt{Delta})^k} +sum_{k=1}^n frac{B(n,k)}{(x-a+sqrt{Delta})^k}$$
        Oh, yes - in my comment, I didn't actually define my notation, and the update to the question imported that without defining it. The purpose is clear; we're just putting both parameters in the notation instead of just the power $k$ of $frac1{z-apmsqrt{Delta}}$. Formally, the definition is the line just above.



        That's half of the conjecture. For the other half, we expand around the other root.
        begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{(w-2sqrt{Delta})^nw^n}=frac1{w^n}cdotfrac{(-2sqrt{Delta})^{-n}}{(1-frac{w}{2sqrt{Delta}})^n}\
        frac1{(x^2-2ax+b)^n} &= frac{D^n}{w^n(1+Dw)^n} = frac{D^n}{w^n}sum_{j=0}^{infty} binom{n+j-1}{j}(-D)^jw^j\
        &=sum_{j=0}^{infty}(-1)^jbinom{n+j-1}{j}D^{n+j}w^{j-n}end{align*}

        Again, extract the negative-exponent terms to get $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-k}D^{2n-k} =(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. The conjecture is confirmed, and we have our general formula.






        share|cite|improve this answer









        $endgroup$



        All right, now I've got it.



        The easiest way to get all the coefficients? Expand in a Laurent series around one of the roots. Substituting $z=x-a-sqrt{Delta}$ and later defining $D=frac1{2sqrt{Delta}}$, we get
        begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{z^n(z+2sqrt{Delta})^n}=frac1{z^n}cdotfrac{(2sqrt{Delta})^{-n}}{(1+frac{z}{2sqrt{Delta}})^n}\
        frac1{(x^2-2ax+b)^n} &= frac{(-D)^n}{z^n(1-Dz)^n} = frac{(-D)^n}{z^n}sum_{j=0}^{infty} binom{n+j-1}{j}D^jz^j\
        &=(-1)^nsum_{j=0}^{infty}binom{n+j-1}{j}D^{n+j}z^{j-n}end{align*}

        We claim that the coefficients $(-1)^nbinom{n+j-1}{j}D^{n+j}$ for $j<n$ are precisely the coefficients of $frac1{z^{n-j}}$ in the partial fractions expansion of $frac1{z^n(z+2sqrt{delta})^n}$. Why? Subtract the negative-exponent terms of the Laurent series from the partial fractions expansion. The difference is locally bounded, with a nice power series. But then, the only terms in the partial fractions expansion that aren't locally bounded are the $frac1{z^k}$ terms - so their coefficients all have to match with the terms from the Laurent series.



        Let $k=n-j$, and we get $A(n,k)=(-1)^nbinom{2n-k-1}{n-k}D^{2n-k}=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ in the partial fractions expansion
        $$frac1{z^n(z+2sqrt{Delta})^n}=sum_{k=1}^n frac{A(n,k)}{z^k} +sum_{k=1}^n frac{B(n,k)}{(z+2sqrt{Delta})^k}=sum_{k=1}^n frac{A(n,k)}{(x-a-sqrt{Delta})^k} +sum_{k=1}^n frac{B(n,k)}{(x-a+sqrt{Delta})^k}$$
        Oh, yes - in my comment, I didn't actually define my notation, and the update to the question imported that without defining it. The purpose is clear; we're just putting both parameters in the notation instead of just the power $k$ of $frac1{z-apmsqrt{Delta}}$. Formally, the definition is the line just above.



        That's half of the conjecture. For the other half, we expand around the other root.
        begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{(w-2sqrt{Delta})^nw^n}=frac1{w^n}cdotfrac{(-2sqrt{Delta})^{-n}}{(1-frac{w}{2sqrt{Delta}})^n}\
        frac1{(x^2-2ax+b)^n} &= frac{D^n}{w^n(1+Dw)^n} = frac{D^n}{w^n}sum_{j=0}^{infty} binom{n+j-1}{j}(-D)^jw^j\
        &=sum_{j=0}^{infty}(-1)^jbinom{n+j-1}{j}D^{n+j}w^{j-n}end{align*}

        Again, extract the negative-exponent terms to get $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-k}D^{2n-k} =(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. The conjecture is confirmed, and we have our general formula.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 25 at 23:34









        jmerryjmerry

        14.9k1632




        14.9k1632























            1












            $begingroup$

            Let $bneq a^2$,
            $$S(n)=int frac {dx}{(x^2-2ax+b)^n}$$
            With method of undetermined coefficients we find formula
            $$S(n)=frac{Ax+B}{(x^2-2ax+b)^{n-1}}+CS(n-1)$$
            We get
            $$1=-left( 2 A n-C-3 Aright) , {{x}^{2}}-left( left( 2 B-2 A aright) n+left( 2 C+4 Aright) a-2 Bright) x\+2 B a n-left( -C-Aright) b-2 B a$$
            $$A=frac{1}{2 left( b-{{a}^{2}}right) , left( n-1right) },B=-frac{a}{2 left( b-{{a}^{2}}right) , left( n-1right) },\C=frac{2 n-3}{2 left( b-{{a}^{2}}right) , left( n-1right) }$$
            Then
            $$S(n)=frac{x-a}{2(n-1)(b-a^2)(x^2-2ax+b)^{n-1}}+
            frac{2n-3}{2(n-1)(b-a^2)}S(n-1), ; n>1$$

            $$S(1)=int frac {dx}{x^2-2ax+b}$$






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
              $endgroup$
              – Maxim
              Jan 25 at 14:56










            • $begingroup$
              @Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
              $endgroup$
              – Awe Kumar Jha
              Jan 26 at 4:12
















            1












            $begingroup$

            Let $bneq a^2$,
            $$S(n)=int frac {dx}{(x^2-2ax+b)^n}$$
            With method of undetermined coefficients we find formula
            $$S(n)=frac{Ax+B}{(x^2-2ax+b)^{n-1}}+CS(n-1)$$
            We get
            $$1=-left( 2 A n-C-3 Aright) , {{x}^{2}}-left( left( 2 B-2 A aright) n+left( 2 C+4 Aright) a-2 Bright) x\+2 B a n-left( -C-Aright) b-2 B a$$
            $$A=frac{1}{2 left( b-{{a}^{2}}right) , left( n-1right) },B=-frac{a}{2 left( b-{{a}^{2}}right) , left( n-1right) },\C=frac{2 n-3}{2 left( b-{{a}^{2}}right) , left( n-1right) }$$
            Then
            $$S(n)=frac{x-a}{2(n-1)(b-a^2)(x^2-2ax+b)^{n-1}}+
            frac{2n-3}{2(n-1)(b-a^2)}S(n-1), ; n>1$$

            $$S(1)=int frac {dx}{x^2-2ax+b}$$






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
              $endgroup$
              – Maxim
              Jan 25 at 14:56










            • $begingroup$
              @Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
              $endgroup$
              – Awe Kumar Jha
              Jan 26 at 4:12














            1












            1








            1





            $begingroup$

            Let $bneq a^2$,
            $$S(n)=int frac {dx}{(x^2-2ax+b)^n}$$
            With method of undetermined coefficients we find formula
            $$S(n)=frac{Ax+B}{(x^2-2ax+b)^{n-1}}+CS(n-1)$$
            We get
            $$1=-left( 2 A n-C-3 Aright) , {{x}^{2}}-left( left( 2 B-2 A aright) n+left( 2 C+4 Aright) a-2 Bright) x\+2 B a n-left( -C-Aright) b-2 B a$$
            $$A=frac{1}{2 left( b-{{a}^{2}}right) , left( n-1right) },B=-frac{a}{2 left( b-{{a}^{2}}right) , left( n-1right) },\C=frac{2 n-3}{2 left( b-{{a}^{2}}right) , left( n-1right) }$$
            Then
            $$S(n)=frac{x-a}{2(n-1)(b-a^2)(x^2-2ax+b)^{n-1}}+
            frac{2n-3}{2(n-1)(b-a^2)}S(n-1), ; n>1$$

            $$S(1)=int frac {dx}{x^2-2ax+b}$$






            share|cite|improve this answer











            $endgroup$



            Let $bneq a^2$,
            $$S(n)=int frac {dx}{(x^2-2ax+b)^n}$$
            With method of undetermined coefficients we find formula
            $$S(n)=frac{Ax+B}{(x^2-2ax+b)^{n-1}}+CS(n-1)$$
            We get
            $$1=-left( 2 A n-C-3 Aright) , {{x}^{2}}-left( left( 2 B-2 A aright) n+left( 2 C+4 Aright) a-2 Bright) x\+2 B a n-left( -C-Aright) b-2 B a$$
            $$A=frac{1}{2 left( b-{{a}^{2}}right) , left( n-1right) },B=-frac{a}{2 left( b-{{a}^{2}}right) , left( n-1right) },\C=frac{2 n-3}{2 left( b-{{a}^{2}}right) , left( n-1right) }$$
            Then
            $$S(n)=frac{x-a}{2(n-1)(b-a^2)(x^2-2ax+b)^{n-1}}+
            frac{2n-3}{2(n-1)(b-a^2)}S(n-1), ; n>1$$

            $$S(1)=int frac {dx}{x^2-2ax+b}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 25 at 13:17

























            answered Jan 25 at 13:05









            Aleksas DomarkasAleksas Domarkas

            1,53816




            1,53816








            • 1




              $begingroup$
              Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
              $endgroup$
              – Maxim
              Jan 25 at 14:56










            • $begingroup$
              @Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
              $endgroup$
              – Awe Kumar Jha
              Jan 26 at 4:12














            • 1




              $begingroup$
              Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
              $endgroup$
              – Maxim
              Jan 25 at 14:56










            • $begingroup$
              @Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
              $endgroup$
              – Awe Kumar Jha
              Jan 26 at 4:12








            1




            1




            $begingroup$
            Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
            $endgroup$
            – Maxim
            Jan 25 at 14:56




            $begingroup$
            Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
            $endgroup$
            – Maxim
            Jan 25 at 14:56












            $begingroup$
            @Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
            $endgroup$
            – Awe Kumar Jha
            Jan 26 at 4:12




            $begingroup$
            @Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
            $endgroup$
            – Awe Kumar Jha
            Jan 26 at 4:12


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086878%2fthe-integral-int-frac-dxx2-2axbn%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith