The Integral $int frac {dx}{(x^2-2ax+b)^n}$
$begingroup$
Recently I came across this general integral,
$$int frac {dx}{(x^2-2ax+b)^n}$$
Putting $x^2-2ax+b=0$ we have,
$$x = a±sqrt {a^2-b} = a±sqrt {∆}$$
Hence the integrand can be written as,
$$
frac {1}{(x^2-2ax+b)^n}
=
frac {1}{(x-a-sqrt ∆)^n(x-a+sqrt ∆)^n}
$$
Resolving into partial fractions we have,
$$
frac {1}{(x^2-2ax+b)^n}
=
sum frac {A_r}{(x-a-sqrt ∆)^r} + sum frac {B_r}{(x-a+sqrt ∆)^r}
$$
Putting $-frac {1}{2sqrt ∆} = D$ , I could produce a table of the coefficients $A$ and $B$ for different $n$.
par
For $n=1$,
$$A_1=-D , B_1=D$$
For $n=2$,
$$A_1=2D^3 , B_1=-2D^3$$
$$A_2=D^2 , B_2 = D^2$$
For $n=3$,
$$A_1=-6D^5 , B_1=6D^5$$
$$A_2=-3D^4 , B_2 = -3D^4$$
$$A_3=-D^3, B_3=D^3$$
For $n=4$,
$$A_1=20D^7, B_1=-20D^7$$
$$A_2=10D^6 , B_2 = 10D^6$$
$$A_3=4D^5, B_3=-4D^5$$
$$A_4=D^4, B_4=D^4$$
For $n=5$,
$$A_1=-70D^9, B_1=70D^9$$
$$A_2=-35D^8, B_2 = -35D^8$$
$$A_3=-15D^7, B_3=15D^7$$
$$A_4=-5D^6, B_4=-5D^6$$
$$A_5=-D^5, B_4=D^5$$
Yet I am unable to deduce a general formula for the coefficients. If I have the coefficients, the integral is almost solved , for then I shall have a logarithmic term and a rational function in $x$. More directly, I seek a result of the form,
$$kappa log left( frac {x-a-sqrt ∆}{x-a+sqrt ∆}right) + frac {P(x)}{Q(x)}$$
Any help would be greatly appreciated.
Conjecture 1(Proved below)
$$A(n,r)= (-1)^n binom {2n-r-1}{n-1} D^{2n-r}$$
$$B(n,r)= (-1)^{n-r} binom {2n-r-1}{n-1} D^{2n-r}$$
calculus indefinite-integrals partial-fractions
$endgroup$
|
show 1 more comment
$begingroup$
Recently I came across this general integral,
$$int frac {dx}{(x^2-2ax+b)^n}$$
Putting $x^2-2ax+b=0$ we have,
$$x = a±sqrt {a^2-b} = a±sqrt {∆}$$
Hence the integrand can be written as,
$$
frac {1}{(x^2-2ax+b)^n}
=
frac {1}{(x-a-sqrt ∆)^n(x-a+sqrt ∆)^n}
$$
Resolving into partial fractions we have,
$$
frac {1}{(x^2-2ax+b)^n}
=
sum frac {A_r}{(x-a-sqrt ∆)^r} + sum frac {B_r}{(x-a+sqrt ∆)^r}
$$
Putting $-frac {1}{2sqrt ∆} = D$ , I could produce a table of the coefficients $A$ and $B$ for different $n$.
par
For $n=1$,
$$A_1=-D , B_1=D$$
For $n=2$,
$$A_1=2D^3 , B_1=-2D^3$$
$$A_2=D^2 , B_2 = D^2$$
For $n=3$,
$$A_1=-6D^5 , B_1=6D^5$$
$$A_2=-3D^4 , B_2 = -3D^4$$
$$A_3=-D^3, B_3=D^3$$
For $n=4$,
$$A_1=20D^7, B_1=-20D^7$$
$$A_2=10D^6 , B_2 = 10D^6$$
$$A_3=4D^5, B_3=-4D^5$$
$$A_4=D^4, B_4=D^4$$
For $n=5$,
$$A_1=-70D^9, B_1=70D^9$$
$$A_2=-35D^8, B_2 = -35D^8$$
$$A_3=-15D^7, B_3=15D^7$$
$$A_4=-5D^6, B_4=-5D^6$$
$$A_5=-D^5, B_4=D^5$$
Yet I am unable to deduce a general formula for the coefficients. If I have the coefficients, the integral is almost solved , for then I shall have a logarithmic term and a rational function in $x$. More directly, I seek a result of the form,
$$kappa log left( frac {x-a-sqrt ∆}{x-a+sqrt ∆}right) + frac {P(x)}{Q(x)}$$
Any help would be greatly appreciated.
Conjecture 1(Proved below)
$$A(n,r)= (-1)^n binom {2n-r-1}{n-1} D^{2n-r}$$
$$B(n,r)= (-1)^{n-r} binom {2n-r-1}{n-1} D^{2n-r}$$
calculus indefinite-integrals partial-fractions
$endgroup$
$begingroup$
The notation $;Delta;$ is usually connected to the discriminant of a quadratic equation. In your case, it'd be $;x_{1,2}=apmsqrtDelta;$...which leads to the second comment: what if $;Delta<0;$ ? Then you have two complex non-real roots...
$endgroup$
– DonAntonio
Jan 25 at 8:46
$begingroup$
The decomposition still makes sense for negative discriminant - it'll just lead to an answer in complex form.
$endgroup$
– jmerry
Jan 25 at 8:49
$begingroup$
@DonAntonio, As for the notation I have amended it, as for the sign of the discriminant , in case it is negative the logarithmic term with imaginary argument can be written as inverse sine function.
$endgroup$
– Awe Kumar Jha
Jan 25 at 9:15
$begingroup$
$frac{A_k}{B_k} = (-1)^k$ for $k = 1,...,n$ except when n = 3. Are the signs right in that case for k = 2, 3?
$endgroup$
– Paul
Jan 25 at 9:18
2
$begingroup$
A conjecture: $A(n,k)=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ and $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. It fits the data given (with the corrected signs). No full solution yet, and I feel like moving on to something else for a while.
$endgroup$
– jmerry
Jan 25 at 9:46
|
show 1 more comment
$begingroup$
Recently I came across this general integral,
$$int frac {dx}{(x^2-2ax+b)^n}$$
Putting $x^2-2ax+b=0$ we have,
$$x = a±sqrt {a^2-b} = a±sqrt {∆}$$
Hence the integrand can be written as,
$$
frac {1}{(x^2-2ax+b)^n}
=
frac {1}{(x-a-sqrt ∆)^n(x-a+sqrt ∆)^n}
$$
Resolving into partial fractions we have,
$$
frac {1}{(x^2-2ax+b)^n}
=
sum frac {A_r}{(x-a-sqrt ∆)^r} + sum frac {B_r}{(x-a+sqrt ∆)^r}
$$
Putting $-frac {1}{2sqrt ∆} = D$ , I could produce a table of the coefficients $A$ and $B$ for different $n$.
par
For $n=1$,
$$A_1=-D , B_1=D$$
For $n=2$,
$$A_1=2D^3 , B_1=-2D^3$$
$$A_2=D^2 , B_2 = D^2$$
For $n=3$,
$$A_1=-6D^5 , B_1=6D^5$$
$$A_2=-3D^4 , B_2 = -3D^4$$
$$A_3=-D^3, B_3=D^3$$
For $n=4$,
$$A_1=20D^7, B_1=-20D^7$$
$$A_2=10D^6 , B_2 = 10D^6$$
$$A_3=4D^5, B_3=-4D^5$$
$$A_4=D^4, B_4=D^4$$
For $n=5$,
$$A_1=-70D^9, B_1=70D^9$$
$$A_2=-35D^8, B_2 = -35D^8$$
$$A_3=-15D^7, B_3=15D^7$$
$$A_4=-5D^6, B_4=-5D^6$$
$$A_5=-D^5, B_4=D^5$$
Yet I am unable to deduce a general formula for the coefficients. If I have the coefficients, the integral is almost solved , for then I shall have a logarithmic term and a rational function in $x$. More directly, I seek a result of the form,
$$kappa log left( frac {x-a-sqrt ∆}{x-a+sqrt ∆}right) + frac {P(x)}{Q(x)}$$
Any help would be greatly appreciated.
Conjecture 1(Proved below)
$$A(n,r)= (-1)^n binom {2n-r-1}{n-1} D^{2n-r}$$
$$B(n,r)= (-1)^{n-r} binom {2n-r-1}{n-1} D^{2n-r}$$
calculus indefinite-integrals partial-fractions
$endgroup$
Recently I came across this general integral,
$$int frac {dx}{(x^2-2ax+b)^n}$$
Putting $x^2-2ax+b=0$ we have,
$$x = a±sqrt {a^2-b} = a±sqrt {∆}$$
Hence the integrand can be written as,
$$
frac {1}{(x^2-2ax+b)^n}
=
frac {1}{(x-a-sqrt ∆)^n(x-a+sqrt ∆)^n}
$$
Resolving into partial fractions we have,
$$
frac {1}{(x^2-2ax+b)^n}
=
sum frac {A_r}{(x-a-sqrt ∆)^r} + sum frac {B_r}{(x-a+sqrt ∆)^r}
$$
Putting $-frac {1}{2sqrt ∆} = D$ , I could produce a table of the coefficients $A$ and $B$ for different $n$.
par
For $n=1$,
$$A_1=-D , B_1=D$$
For $n=2$,
$$A_1=2D^3 , B_1=-2D^3$$
$$A_2=D^2 , B_2 = D^2$$
For $n=3$,
$$A_1=-6D^5 , B_1=6D^5$$
$$A_2=-3D^4 , B_2 = -3D^4$$
$$A_3=-D^3, B_3=D^3$$
For $n=4$,
$$A_1=20D^7, B_1=-20D^7$$
$$A_2=10D^6 , B_2 = 10D^6$$
$$A_3=4D^5, B_3=-4D^5$$
$$A_4=D^4, B_4=D^4$$
For $n=5$,
$$A_1=-70D^9, B_1=70D^9$$
$$A_2=-35D^8, B_2 = -35D^8$$
$$A_3=-15D^7, B_3=15D^7$$
$$A_4=-5D^6, B_4=-5D^6$$
$$A_5=-D^5, B_4=D^5$$
Yet I am unable to deduce a general formula for the coefficients. If I have the coefficients, the integral is almost solved , for then I shall have a logarithmic term and a rational function in $x$. More directly, I seek a result of the form,
$$kappa log left( frac {x-a-sqrt ∆}{x-a+sqrt ∆}right) + frac {P(x)}{Q(x)}$$
Any help would be greatly appreciated.
Conjecture 1(Proved below)
$$A(n,r)= (-1)^n binom {2n-r-1}{n-1} D^{2n-r}$$
$$B(n,r)= (-1)^{n-r} binom {2n-r-1}{n-1} D^{2n-r}$$
calculus indefinite-integrals partial-fractions
calculus indefinite-integrals partial-fractions
edited Jan 26 at 4:00
Awe Kumar Jha
asked Jan 25 at 8:39
Awe Kumar JhaAwe Kumar Jha
516113
516113
$begingroup$
The notation $;Delta;$ is usually connected to the discriminant of a quadratic equation. In your case, it'd be $;x_{1,2}=apmsqrtDelta;$...which leads to the second comment: what if $;Delta<0;$ ? Then you have two complex non-real roots...
$endgroup$
– DonAntonio
Jan 25 at 8:46
$begingroup$
The decomposition still makes sense for negative discriminant - it'll just lead to an answer in complex form.
$endgroup$
– jmerry
Jan 25 at 8:49
$begingroup$
@DonAntonio, As for the notation I have amended it, as for the sign of the discriminant , in case it is negative the logarithmic term with imaginary argument can be written as inverse sine function.
$endgroup$
– Awe Kumar Jha
Jan 25 at 9:15
$begingroup$
$frac{A_k}{B_k} = (-1)^k$ for $k = 1,...,n$ except when n = 3. Are the signs right in that case for k = 2, 3?
$endgroup$
– Paul
Jan 25 at 9:18
2
$begingroup$
A conjecture: $A(n,k)=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ and $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. It fits the data given (with the corrected signs). No full solution yet, and I feel like moving on to something else for a while.
$endgroup$
– jmerry
Jan 25 at 9:46
|
show 1 more comment
$begingroup$
The notation $;Delta;$ is usually connected to the discriminant of a quadratic equation. In your case, it'd be $;x_{1,2}=apmsqrtDelta;$...which leads to the second comment: what if $;Delta<0;$ ? Then you have two complex non-real roots...
$endgroup$
– DonAntonio
Jan 25 at 8:46
$begingroup$
The decomposition still makes sense for negative discriminant - it'll just lead to an answer in complex form.
$endgroup$
– jmerry
Jan 25 at 8:49
$begingroup$
@DonAntonio, As for the notation I have amended it, as for the sign of the discriminant , in case it is negative the logarithmic term with imaginary argument can be written as inverse sine function.
$endgroup$
– Awe Kumar Jha
Jan 25 at 9:15
$begingroup$
$frac{A_k}{B_k} = (-1)^k$ for $k = 1,...,n$ except when n = 3. Are the signs right in that case for k = 2, 3?
$endgroup$
– Paul
Jan 25 at 9:18
2
$begingroup$
A conjecture: $A(n,k)=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ and $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. It fits the data given (with the corrected signs). No full solution yet, and I feel like moving on to something else for a while.
$endgroup$
– jmerry
Jan 25 at 9:46
$begingroup$
The notation $;Delta;$ is usually connected to the discriminant of a quadratic equation. In your case, it'd be $;x_{1,2}=apmsqrtDelta;$...which leads to the second comment: what if $;Delta<0;$ ? Then you have two complex non-real roots...
$endgroup$
– DonAntonio
Jan 25 at 8:46
$begingroup$
The notation $;Delta;$ is usually connected to the discriminant of a quadratic equation. In your case, it'd be $;x_{1,2}=apmsqrtDelta;$...which leads to the second comment: what if $;Delta<0;$ ? Then you have two complex non-real roots...
$endgroup$
– DonAntonio
Jan 25 at 8:46
$begingroup$
The decomposition still makes sense for negative discriminant - it'll just lead to an answer in complex form.
$endgroup$
– jmerry
Jan 25 at 8:49
$begingroup$
The decomposition still makes sense for negative discriminant - it'll just lead to an answer in complex form.
$endgroup$
– jmerry
Jan 25 at 8:49
$begingroup$
@DonAntonio, As for the notation I have amended it, as for the sign of the discriminant , in case it is negative the logarithmic term with imaginary argument can be written as inverse sine function.
$endgroup$
– Awe Kumar Jha
Jan 25 at 9:15
$begingroup$
@DonAntonio, As for the notation I have amended it, as for the sign of the discriminant , in case it is negative the logarithmic term with imaginary argument can be written as inverse sine function.
$endgroup$
– Awe Kumar Jha
Jan 25 at 9:15
$begingroup$
$frac{A_k}{B_k} = (-1)^k$ for $k = 1,...,n$ except when n = 3. Are the signs right in that case for k = 2, 3?
$endgroup$
– Paul
Jan 25 at 9:18
$begingroup$
$frac{A_k}{B_k} = (-1)^k$ for $k = 1,...,n$ except when n = 3. Are the signs right in that case for k = 2, 3?
$endgroup$
– Paul
Jan 25 at 9:18
2
2
$begingroup$
A conjecture: $A(n,k)=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ and $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. It fits the data given (with the corrected signs). No full solution yet, and I feel like moving on to something else for a while.
$endgroup$
– jmerry
Jan 25 at 9:46
$begingroup$
A conjecture: $A(n,k)=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ and $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. It fits the data given (with the corrected signs). No full solution yet, and I feel like moving on to something else for a while.
$endgroup$
– jmerry
Jan 25 at 9:46
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
All right, now I've got it.
The easiest way to get all the coefficients? Expand in a Laurent series around one of the roots. Substituting $z=x-a-sqrt{Delta}$ and later defining $D=frac1{2sqrt{Delta}}$, we get
begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{z^n(z+2sqrt{Delta})^n}=frac1{z^n}cdotfrac{(2sqrt{Delta})^{-n}}{(1+frac{z}{2sqrt{Delta}})^n}\
frac1{(x^2-2ax+b)^n} &= frac{(-D)^n}{z^n(1-Dz)^n} = frac{(-D)^n}{z^n}sum_{j=0}^{infty} binom{n+j-1}{j}D^jz^j\
&=(-1)^nsum_{j=0}^{infty}binom{n+j-1}{j}D^{n+j}z^{j-n}end{align*}
We claim that the coefficients $(-1)^nbinom{n+j-1}{j}D^{n+j}$ for $j<n$ are precisely the coefficients of $frac1{z^{n-j}}$ in the partial fractions expansion of $frac1{z^n(z+2sqrt{delta})^n}$. Why? Subtract the negative-exponent terms of the Laurent series from the partial fractions expansion. The difference is locally bounded, with a nice power series. But then, the only terms in the partial fractions expansion that aren't locally bounded are the $frac1{z^k}$ terms - so their coefficients all have to match with the terms from the Laurent series.
Let $k=n-j$, and we get $A(n,k)=(-1)^nbinom{2n-k-1}{n-k}D^{2n-k}=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ in the partial fractions expansion
$$frac1{z^n(z+2sqrt{Delta})^n}=sum_{k=1}^n frac{A(n,k)}{z^k} +sum_{k=1}^n frac{B(n,k)}{(z+2sqrt{Delta})^k}=sum_{k=1}^n frac{A(n,k)}{(x-a-sqrt{Delta})^k} +sum_{k=1}^n frac{B(n,k)}{(x-a+sqrt{Delta})^k}$$
Oh, yes - in my comment, I didn't actually define my notation, and the update to the question imported that without defining it. The purpose is clear; we're just putting both parameters in the notation instead of just the power $k$ of $frac1{z-apmsqrt{Delta}}$. Formally, the definition is the line just above.
That's half of the conjecture. For the other half, we expand around the other root.
begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{(w-2sqrt{Delta})^nw^n}=frac1{w^n}cdotfrac{(-2sqrt{Delta})^{-n}}{(1-frac{w}{2sqrt{Delta}})^n}\
frac1{(x^2-2ax+b)^n} &= frac{D^n}{w^n(1+Dw)^n} = frac{D^n}{w^n}sum_{j=0}^{infty} binom{n+j-1}{j}(-D)^jw^j\
&=sum_{j=0}^{infty}(-1)^jbinom{n+j-1}{j}D^{n+j}w^{j-n}end{align*}
Again, extract the negative-exponent terms to get $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-k}D^{2n-k} =(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. The conjecture is confirmed, and we have our general formula.
$endgroup$
add a comment |
$begingroup$
Let $bneq a^2$,
$$S(n)=int frac {dx}{(x^2-2ax+b)^n}$$
With method of undetermined coefficients we find formula
$$S(n)=frac{Ax+B}{(x^2-2ax+b)^{n-1}}+CS(n-1)$$
We get
$$1=-left( 2 A n-C-3 Aright) , {{x}^{2}}-left( left( 2 B-2 A aright) n+left( 2 C+4 Aright) a-2 Bright) x\+2 B a n-left( -C-Aright) b-2 B a$$
$$A=frac{1}{2 left( b-{{a}^{2}}right) , left( n-1right) },B=-frac{a}{2 left( b-{{a}^{2}}right) , left( n-1right) },\C=frac{2 n-3}{2 left( b-{{a}^{2}}right) , left( n-1right) }$$
Then
$$S(n)=frac{x-a}{2(n-1)(b-a^2)(x^2-2ax+b)^{n-1}}+
frac{2n-3}{2(n-1)(b-a^2)}S(n-1), ; n>1$$
$$S(1)=int frac {dx}{x^2-2ax+b}$$
$endgroup$
1
$begingroup$
Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
$endgroup$
– Maxim
Jan 25 at 14:56
$begingroup$
@Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
$endgroup$
– Awe Kumar Jha
Jan 26 at 4:12
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086878%2fthe-integral-int-frac-dxx2-2axbn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
All right, now I've got it.
The easiest way to get all the coefficients? Expand in a Laurent series around one of the roots. Substituting $z=x-a-sqrt{Delta}$ and later defining $D=frac1{2sqrt{Delta}}$, we get
begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{z^n(z+2sqrt{Delta})^n}=frac1{z^n}cdotfrac{(2sqrt{Delta})^{-n}}{(1+frac{z}{2sqrt{Delta}})^n}\
frac1{(x^2-2ax+b)^n} &= frac{(-D)^n}{z^n(1-Dz)^n} = frac{(-D)^n}{z^n}sum_{j=0}^{infty} binom{n+j-1}{j}D^jz^j\
&=(-1)^nsum_{j=0}^{infty}binom{n+j-1}{j}D^{n+j}z^{j-n}end{align*}
We claim that the coefficients $(-1)^nbinom{n+j-1}{j}D^{n+j}$ for $j<n$ are precisely the coefficients of $frac1{z^{n-j}}$ in the partial fractions expansion of $frac1{z^n(z+2sqrt{delta})^n}$. Why? Subtract the negative-exponent terms of the Laurent series from the partial fractions expansion. The difference is locally bounded, with a nice power series. But then, the only terms in the partial fractions expansion that aren't locally bounded are the $frac1{z^k}$ terms - so their coefficients all have to match with the terms from the Laurent series.
Let $k=n-j$, and we get $A(n,k)=(-1)^nbinom{2n-k-1}{n-k}D^{2n-k}=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ in the partial fractions expansion
$$frac1{z^n(z+2sqrt{Delta})^n}=sum_{k=1}^n frac{A(n,k)}{z^k} +sum_{k=1}^n frac{B(n,k)}{(z+2sqrt{Delta})^k}=sum_{k=1}^n frac{A(n,k)}{(x-a-sqrt{Delta})^k} +sum_{k=1}^n frac{B(n,k)}{(x-a+sqrt{Delta})^k}$$
Oh, yes - in my comment, I didn't actually define my notation, and the update to the question imported that without defining it. The purpose is clear; we're just putting both parameters in the notation instead of just the power $k$ of $frac1{z-apmsqrt{Delta}}$. Formally, the definition is the line just above.
That's half of the conjecture. For the other half, we expand around the other root.
begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{(w-2sqrt{Delta})^nw^n}=frac1{w^n}cdotfrac{(-2sqrt{Delta})^{-n}}{(1-frac{w}{2sqrt{Delta}})^n}\
frac1{(x^2-2ax+b)^n} &= frac{D^n}{w^n(1+Dw)^n} = frac{D^n}{w^n}sum_{j=0}^{infty} binom{n+j-1}{j}(-D)^jw^j\
&=sum_{j=0}^{infty}(-1)^jbinom{n+j-1}{j}D^{n+j}w^{j-n}end{align*}
Again, extract the negative-exponent terms to get $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-k}D^{2n-k} =(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. The conjecture is confirmed, and we have our general formula.
$endgroup$
add a comment |
$begingroup$
All right, now I've got it.
The easiest way to get all the coefficients? Expand in a Laurent series around one of the roots. Substituting $z=x-a-sqrt{Delta}$ and later defining $D=frac1{2sqrt{Delta}}$, we get
begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{z^n(z+2sqrt{Delta})^n}=frac1{z^n}cdotfrac{(2sqrt{Delta})^{-n}}{(1+frac{z}{2sqrt{Delta}})^n}\
frac1{(x^2-2ax+b)^n} &= frac{(-D)^n}{z^n(1-Dz)^n} = frac{(-D)^n}{z^n}sum_{j=0}^{infty} binom{n+j-1}{j}D^jz^j\
&=(-1)^nsum_{j=0}^{infty}binom{n+j-1}{j}D^{n+j}z^{j-n}end{align*}
We claim that the coefficients $(-1)^nbinom{n+j-1}{j}D^{n+j}$ for $j<n$ are precisely the coefficients of $frac1{z^{n-j}}$ in the partial fractions expansion of $frac1{z^n(z+2sqrt{delta})^n}$. Why? Subtract the negative-exponent terms of the Laurent series from the partial fractions expansion. The difference is locally bounded, with a nice power series. But then, the only terms in the partial fractions expansion that aren't locally bounded are the $frac1{z^k}$ terms - so their coefficients all have to match with the terms from the Laurent series.
Let $k=n-j$, and we get $A(n,k)=(-1)^nbinom{2n-k-1}{n-k}D^{2n-k}=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ in the partial fractions expansion
$$frac1{z^n(z+2sqrt{Delta})^n}=sum_{k=1}^n frac{A(n,k)}{z^k} +sum_{k=1}^n frac{B(n,k)}{(z+2sqrt{Delta})^k}=sum_{k=1}^n frac{A(n,k)}{(x-a-sqrt{Delta})^k} +sum_{k=1}^n frac{B(n,k)}{(x-a+sqrt{Delta})^k}$$
Oh, yes - in my comment, I didn't actually define my notation, and the update to the question imported that without defining it. The purpose is clear; we're just putting both parameters in the notation instead of just the power $k$ of $frac1{z-apmsqrt{Delta}}$. Formally, the definition is the line just above.
That's half of the conjecture. For the other half, we expand around the other root.
begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{(w-2sqrt{Delta})^nw^n}=frac1{w^n}cdotfrac{(-2sqrt{Delta})^{-n}}{(1-frac{w}{2sqrt{Delta}})^n}\
frac1{(x^2-2ax+b)^n} &= frac{D^n}{w^n(1+Dw)^n} = frac{D^n}{w^n}sum_{j=0}^{infty} binom{n+j-1}{j}(-D)^jw^j\
&=sum_{j=0}^{infty}(-1)^jbinom{n+j-1}{j}D^{n+j}w^{j-n}end{align*}
Again, extract the negative-exponent terms to get $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-k}D^{2n-k} =(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. The conjecture is confirmed, and we have our general formula.
$endgroup$
add a comment |
$begingroup$
All right, now I've got it.
The easiest way to get all the coefficients? Expand in a Laurent series around one of the roots. Substituting $z=x-a-sqrt{Delta}$ and later defining $D=frac1{2sqrt{Delta}}$, we get
begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{z^n(z+2sqrt{Delta})^n}=frac1{z^n}cdotfrac{(2sqrt{Delta})^{-n}}{(1+frac{z}{2sqrt{Delta}})^n}\
frac1{(x^2-2ax+b)^n} &= frac{(-D)^n}{z^n(1-Dz)^n} = frac{(-D)^n}{z^n}sum_{j=0}^{infty} binom{n+j-1}{j}D^jz^j\
&=(-1)^nsum_{j=0}^{infty}binom{n+j-1}{j}D^{n+j}z^{j-n}end{align*}
We claim that the coefficients $(-1)^nbinom{n+j-1}{j}D^{n+j}$ for $j<n$ are precisely the coefficients of $frac1{z^{n-j}}$ in the partial fractions expansion of $frac1{z^n(z+2sqrt{delta})^n}$. Why? Subtract the negative-exponent terms of the Laurent series from the partial fractions expansion. The difference is locally bounded, with a nice power series. But then, the only terms in the partial fractions expansion that aren't locally bounded are the $frac1{z^k}$ terms - so their coefficients all have to match with the terms from the Laurent series.
Let $k=n-j$, and we get $A(n,k)=(-1)^nbinom{2n-k-1}{n-k}D^{2n-k}=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ in the partial fractions expansion
$$frac1{z^n(z+2sqrt{Delta})^n}=sum_{k=1}^n frac{A(n,k)}{z^k} +sum_{k=1}^n frac{B(n,k)}{(z+2sqrt{Delta})^k}=sum_{k=1}^n frac{A(n,k)}{(x-a-sqrt{Delta})^k} +sum_{k=1}^n frac{B(n,k)}{(x-a+sqrt{Delta})^k}$$
Oh, yes - in my comment, I didn't actually define my notation, and the update to the question imported that without defining it. The purpose is clear; we're just putting both parameters in the notation instead of just the power $k$ of $frac1{z-apmsqrt{Delta}}$. Formally, the definition is the line just above.
That's half of the conjecture. For the other half, we expand around the other root.
begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{(w-2sqrt{Delta})^nw^n}=frac1{w^n}cdotfrac{(-2sqrt{Delta})^{-n}}{(1-frac{w}{2sqrt{Delta}})^n}\
frac1{(x^2-2ax+b)^n} &= frac{D^n}{w^n(1+Dw)^n} = frac{D^n}{w^n}sum_{j=0}^{infty} binom{n+j-1}{j}(-D)^jw^j\
&=sum_{j=0}^{infty}(-1)^jbinom{n+j-1}{j}D^{n+j}w^{j-n}end{align*}
Again, extract the negative-exponent terms to get $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-k}D^{2n-k} =(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. The conjecture is confirmed, and we have our general formula.
$endgroup$
All right, now I've got it.
The easiest way to get all the coefficients? Expand in a Laurent series around one of the roots. Substituting $z=x-a-sqrt{Delta}$ and later defining $D=frac1{2sqrt{Delta}}$, we get
begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{z^n(z+2sqrt{Delta})^n}=frac1{z^n}cdotfrac{(2sqrt{Delta})^{-n}}{(1+frac{z}{2sqrt{Delta}})^n}\
frac1{(x^2-2ax+b)^n} &= frac{(-D)^n}{z^n(1-Dz)^n} = frac{(-D)^n}{z^n}sum_{j=0}^{infty} binom{n+j-1}{j}D^jz^j\
&=(-1)^nsum_{j=0}^{infty}binom{n+j-1}{j}D^{n+j}z^{j-n}end{align*}
We claim that the coefficients $(-1)^nbinom{n+j-1}{j}D^{n+j}$ for $j<n$ are precisely the coefficients of $frac1{z^{n-j}}$ in the partial fractions expansion of $frac1{z^n(z+2sqrt{delta})^n}$. Why? Subtract the negative-exponent terms of the Laurent series from the partial fractions expansion. The difference is locally bounded, with a nice power series. But then, the only terms in the partial fractions expansion that aren't locally bounded are the $frac1{z^k}$ terms - so their coefficients all have to match with the terms from the Laurent series.
Let $k=n-j$, and we get $A(n,k)=(-1)^nbinom{2n-k-1}{n-k}D^{2n-k}=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ in the partial fractions expansion
$$frac1{z^n(z+2sqrt{Delta})^n}=sum_{k=1}^n frac{A(n,k)}{z^k} +sum_{k=1}^n frac{B(n,k)}{(z+2sqrt{Delta})^k}=sum_{k=1}^n frac{A(n,k)}{(x-a-sqrt{Delta})^k} +sum_{k=1}^n frac{B(n,k)}{(x-a+sqrt{Delta})^k}$$
Oh, yes - in my comment, I didn't actually define my notation, and the update to the question imported that without defining it. The purpose is clear; we're just putting both parameters in the notation instead of just the power $k$ of $frac1{z-apmsqrt{Delta}}$. Formally, the definition is the line just above.
That's half of the conjecture. For the other half, we expand around the other root.
begin{align*}frac1{(x^2-2ax+b)^n} &= frac1{(x-a-sqrt{Delta})^n(x-a+sqrt{Delta})^n}=frac1{(w-2sqrt{Delta})^nw^n}=frac1{w^n}cdotfrac{(-2sqrt{Delta})^{-n}}{(1-frac{w}{2sqrt{Delta}})^n}\
frac1{(x^2-2ax+b)^n} &= frac{D^n}{w^n(1+Dw)^n} = frac{D^n}{w^n}sum_{j=0}^{infty} binom{n+j-1}{j}(-D)^jw^j\
&=sum_{j=0}^{infty}(-1)^jbinom{n+j-1}{j}D^{n+j}w^{j-n}end{align*}
Again, extract the negative-exponent terms to get $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-k}D^{2n-k} =(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. The conjecture is confirmed, and we have our general formula.
answered Jan 25 at 23:34
jmerryjmerry
14.9k1632
14.9k1632
add a comment |
add a comment |
$begingroup$
Let $bneq a^2$,
$$S(n)=int frac {dx}{(x^2-2ax+b)^n}$$
With method of undetermined coefficients we find formula
$$S(n)=frac{Ax+B}{(x^2-2ax+b)^{n-1}}+CS(n-1)$$
We get
$$1=-left( 2 A n-C-3 Aright) , {{x}^{2}}-left( left( 2 B-2 A aright) n+left( 2 C+4 Aright) a-2 Bright) x\+2 B a n-left( -C-Aright) b-2 B a$$
$$A=frac{1}{2 left( b-{{a}^{2}}right) , left( n-1right) },B=-frac{a}{2 left( b-{{a}^{2}}right) , left( n-1right) },\C=frac{2 n-3}{2 left( b-{{a}^{2}}right) , left( n-1right) }$$
Then
$$S(n)=frac{x-a}{2(n-1)(b-a^2)(x^2-2ax+b)^{n-1}}+
frac{2n-3}{2(n-1)(b-a^2)}S(n-1), ; n>1$$
$$S(1)=int frac {dx}{x^2-2ax+b}$$
$endgroup$
1
$begingroup$
Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
$endgroup$
– Maxim
Jan 25 at 14:56
$begingroup$
@Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
$endgroup$
– Awe Kumar Jha
Jan 26 at 4:12
add a comment |
$begingroup$
Let $bneq a^2$,
$$S(n)=int frac {dx}{(x^2-2ax+b)^n}$$
With method of undetermined coefficients we find formula
$$S(n)=frac{Ax+B}{(x^2-2ax+b)^{n-1}}+CS(n-1)$$
We get
$$1=-left( 2 A n-C-3 Aright) , {{x}^{2}}-left( left( 2 B-2 A aright) n+left( 2 C+4 Aright) a-2 Bright) x\+2 B a n-left( -C-Aright) b-2 B a$$
$$A=frac{1}{2 left( b-{{a}^{2}}right) , left( n-1right) },B=-frac{a}{2 left( b-{{a}^{2}}right) , left( n-1right) },\C=frac{2 n-3}{2 left( b-{{a}^{2}}right) , left( n-1right) }$$
Then
$$S(n)=frac{x-a}{2(n-1)(b-a^2)(x^2-2ax+b)^{n-1}}+
frac{2n-3}{2(n-1)(b-a^2)}S(n-1), ; n>1$$
$$S(1)=int frac {dx}{x^2-2ax+b}$$
$endgroup$
1
$begingroup$
Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
$endgroup$
– Maxim
Jan 25 at 14:56
$begingroup$
@Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
$endgroup$
– Awe Kumar Jha
Jan 26 at 4:12
add a comment |
$begingroup$
Let $bneq a^2$,
$$S(n)=int frac {dx}{(x^2-2ax+b)^n}$$
With method of undetermined coefficients we find formula
$$S(n)=frac{Ax+B}{(x^2-2ax+b)^{n-1}}+CS(n-1)$$
We get
$$1=-left( 2 A n-C-3 Aright) , {{x}^{2}}-left( left( 2 B-2 A aright) n+left( 2 C+4 Aright) a-2 Bright) x\+2 B a n-left( -C-Aright) b-2 B a$$
$$A=frac{1}{2 left( b-{{a}^{2}}right) , left( n-1right) },B=-frac{a}{2 left( b-{{a}^{2}}right) , left( n-1right) },\C=frac{2 n-3}{2 left( b-{{a}^{2}}right) , left( n-1right) }$$
Then
$$S(n)=frac{x-a}{2(n-1)(b-a^2)(x^2-2ax+b)^{n-1}}+
frac{2n-3}{2(n-1)(b-a^2)}S(n-1), ; n>1$$
$$S(1)=int frac {dx}{x^2-2ax+b}$$
$endgroup$
Let $bneq a^2$,
$$S(n)=int frac {dx}{(x^2-2ax+b)^n}$$
With method of undetermined coefficients we find formula
$$S(n)=frac{Ax+B}{(x^2-2ax+b)^{n-1}}+CS(n-1)$$
We get
$$1=-left( 2 A n-C-3 Aright) , {{x}^{2}}-left( left( 2 B-2 A aright) n+left( 2 C+4 Aright) a-2 Bright) x\+2 B a n-left( -C-Aright) b-2 B a$$
$$A=frac{1}{2 left( b-{{a}^{2}}right) , left( n-1right) },B=-frac{a}{2 left( b-{{a}^{2}}right) , left( n-1right) },\C=frac{2 n-3}{2 left( b-{{a}^{2}}right) , left( n-1right) }$$
Then
$$S(n)=frac{x-a}{2(n-1)(b-a^2)(x^2-2ax+b)^{n-1}}+
frac{2n-3}{2(n-1)(b-a^2)}S(n-1), ; n>1$$
$$S(1)=int frac {dx}{x^2-2ax+b}$$
edited Jan 25 at 13:17
answered Jan 25 at 13:05
Aleksas DomarkasAleksas Domarkas
1,53816
1,53816
1
$begingroup$
Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
$endgroup$
– Maxim
Jan 25 at 14:56
$begingroup$
@Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
$endgroup$
– Awe Kumar Jha
Jan 26 at 4:12
add a comment |
1
$begingroup$
Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
$endgroup$
– Maxim
Jan 25 at 14:56
$begingroup$
@Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
$endgroup$
– Awe Kumar Jha
Jan 26 at 4:12
1
1
$begingroup$
Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
$endgroup$
– Maxim
Jan 25 at 14:56
$begingroup$
Moreover, this recurrence can be solved in closed form, giving $$int frac {dx} {(x - a)^n (x - b)^n} = frac {a + b - 2 x} {2 (2 n - 1) (x - a)^n (x - b)^n} ,{_2hspace{-1px}F_1} {left( 1, n; n + frac 1 2; -frac {(a - b)^2} {4 (x - a) (x - b)} right)}.$$
$endgroup$
– Maxim
Jan 25 at 14:56
$begingroup$
@Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
$endgroup$
– Awe Kumar Jha
Jan 26 at 4:12
$begingroup$
@Aleksas Somaras, though I did not mark your answer ,yet I appreciate your approach of using reduction formula and therefore it is my humble request that please don't remove your answer.
$endgroup$
– Awe Kumar Jha
Jan 26 at 4:12
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086878%2fthe-integral-int-frac-dxx2-2axbn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown

$begingroup$
The notation $;Delta;$ is usually connected to the discriminant of a quadratic equation. In your case, it'd be $;x_{1,2}=apmsqrtDelta;$...which leads to the second comment: what if $;Delta<0;$ ? Then you have two complex non-real roots...
$endgroup$
– DonAntonio
Jan 25 at 8:46
$begingroup$
The decomposition still makes sense for negative discriminant - it'll just lead to an answer in complex form.
$endgroup$
– jmerry
Jan 25 at 8:49
$begingroup$
@DonAntonio, As for the notation I have amended it, as for the sign of the discriminant , in case it is negative the logarithmic term with imaginary argument can be written as inverse sine function.
$endgroup$
– Awe Kumar Jha
Jan 25 at 9:15
$begingroup$
$frac{A_k}{B_k} = (-1)^k$ for $k = 1,...,n$ except when n = 3. Are the signs right in that case for k = 2, 3?
$endgroup$
– Paul
Jan 25 at 9:18
2
$begingroup$
A conjecture: $A(n,k)=(-1)^nbinom{2n-k-1}{n-1}D^{2n-k}$ and $B(n,k)=(-1)^{n-k}binom{2n-k-1}{n-1}D^{2n-k}$. It fits the data given (with the corrected signs). No full solution yet, and I feel like moving on to something else for a while.
$endgroup$
– jmerry
Jan 25 at 9:46