Equivalence of two MLE estimators with a constraint
$begingroup$
Consider the following objective function $Sleft( theta ,w|Lambda right)
.$ The value of $Sleft( theta ,w|Lambda right) $ depends on the nuisance
parameters $Lambda .$ However, the first order conditions of $Sleft(
theta ,w|Lambda right) $ is $
[
frac{partial Sleft( theta ,w|Lambda right) }{partial theta }=0text{
and }frac{partial Sleft( theta ,w|Lambda right) }{partial w}=0,
]%
$which will give $w^{T}Lambda =0$ (assume the multiplication is admissible)$.
$ Substituting $w^{T}Lambda =0$ back to the origirinal objective function,
it becomes $Sleft( theta |wright) ,$ which no longer a function of $%
Lambda .$ My question is whether the solution of $arg min Sleft( theta
,w|Lambda right) $ and $arg min Sleft( theta |wright) $ are
equivalent for $theta $ and $w,$ i.e., let
begin{eqnarray*}
left( hat{theta},hat{w}right) &=&underset{theta ,w}{arg min }%
Sleft( theta ,w|Lambda right) \
left( hat{theta}^{ast },hat{w}^{ast }right) &=&underset{theta ,w}{%
arg min }Sleft( theta ,w|Lambda right) text{ subject to }w^{T}Lambda
=0,
end{eqnarray*}
then is it$%
[
hat{theta}=hat{theta}^{ast }text{ and }hat{w}=hat{w}^{ast }.
]%
$Any reference on this? Thanks
maximum-likelihood constraints
$endgroup$
add a comment |
$begingroup$
Consider the following objective function $Sleft( theta ,w|Lambda right)
.$ The value of $Sleft( theta ,w|Lambda right) $ depends on the nuisance
parameters $Lambda .$ However, the first order conditions of $Sleft(
theta ,w|Lambda right) $ is $
[
frac{partial Sleft( theta ,w|Lambda right) }{partial theta }=0text{
and }frac{partial Sleft( theta ,w|Lambda right) }{partial w}=0,
]%
$which will give $w^{T}Lambda =0$ (assume the multiplication is admissible)$.
$ Substituting $w^{T}Lambda =0$ back to the origirinal objective function,
it becomes $Sleft( theta |wright) ,$ which no longer a function of $%
Lambda .$ My question is whether the solution of $arg min Sleft( theta
,w|Lambda right) $ and $arg min Sleft( theta |wright) $ are
equivalent for $theta $ and $w,$ i.e., let
begin{eqnarray*}
left( hat{theta},hat{w}right) &=&underset{theta ,w}{arg min }%
Sleft( theta ,w|Lambda right) \
left( hat{theta}^{ast },hat{w}^{ast }right) &=&underset{theta ,w}{%
arg min }Sleft( theta ,w|Lambda right) text{ subject to }w^{T}Lambda
=0,
end{eqnarray*}
then is it$%
[
hat{theta}=hat{theta}^{ast }text{ and }hat{w}=hat{w}^{ast }.
]%
$Any reference on this? Thanks
maximum-likelihood constraints
$endgroup$
add a comment |
$begingroup$
Consider the following objective function $Sleft( theta ,w|Lambda right)
.$ The value of $Sleft( theta ,w|Lambda right) $ depends on the nuisance
parameters $Lambda .$ However, the first order conditions of $Sleft(
theta ,w|Lambda right) $ is $
[
frac{partial Sleft( theta ,w|Lambda right) }{partial theta }=0text{
and }frac{partial Sleft( theta ,w|Lambda right) }{partial w}=0,
]%
$which will give $w^{T}Lambda =0$ (assume the multiplication is admissible)$.
$ Substituting $w^{T}Lambda =0$ back to the origirinal objective function,
it becomes $Sleft( theta |wright) ,$ which no longer a function of $%
Lambda .$ My question is whether the solution of $arg min Sleft( theta
,w|Lambda right) $ and $arg min Sleft( theta |wright) $ are
equivalent for $theta $ and $w,$ i.e., let
begin{eqnarray*}
left( hat{theta},hat{w}right) &=&underset{theta ,w}{arg min }%
Sleft( theta ,w|Lambda right) \
left( hat{theta}^{ast },hat{w}^{ast }right) &=&underset{theta ,w}{%
arg min }Sleft( theta ,w|Lambda right) text{ subject to }w^{T}Lambda
=0,
end{eqnarray*}
then is it$%
[
hat{theta}=hat{theta}^{ast }text{ and }hat{w}=hat{w}^{ast }.
]%
$Any reference on this? Thanks
maximum-likelihood constraints
$endgroup$
Consider the following objective function $Sleft( theta ,w|Lambda right)
.$ The value of $Sleft( theta ,w|Lambda right) $ depends on the nuisance
parameters $Lambda .$ However, the first order conditions of $Sleft(
theta ,w|Lambda right) $ is $
[
frac{partial Sleft( theta ,w|Lambda right) }{partial theta }=0text{
and }frac{partial Sleft( theta ,w|Lambda right) }{partial w}=0,
]%
$which will give $w^{T}Lambda =0$ (assume the multiplication is admissible)$.
$ Substituting $w^{T}Lambda =0$ back to the origirinal objective function,
it becomes $Sleft( theta |wright) ,$ which no longer a function of $%
Lambda .$ My question is whether the solution of $arg min Sleft( theta
,w|Lambda right) $ and $arg min Sleft( theta |wright) $ are
equivalent for $theta $ and $w,$ i.e., let
begin{eqnarray*}
left( hat{theta},hat{w}right) &=&underset{theta ,w}{arg min }%
Sleft( theta ,w|Lambda right) \
left( hat{theta}^{ast },hat{w}^{ast }right) &=&underset{theta ,w}{%
arg min }Sleft( theta ,w|Lambda right) text{ subject to }w^{T}Lambda
=0,
end{eqnarray*}
then is it$%
[
hat{theta}=hat{theta}^{ast }text{ and }hat{w}=hat{w}^{ast }.
]%
$Any reference on this? Thanks
maximum-likelihood constraints
maximum-likelihood constraints
asked Feb 1 at 3:31
Charles ChouCharles Chou
869
869
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095783%2fequivalence-of-two-mle-estimators-with-a-constraint%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095783%2fequivalence-of-two-mle-estimators-with-a-constraint%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown