Number of integral solutions $x_1 + x_2 + x_3 = 10$
$x_1 + x_2 + x_3 = 10, 0 leq x_1 leq 10 , 0 leq x_2 leq 6 , 0 leq x_3 leq 2 $
$[x^{10}] (1 + x^1 + x^2 + ... + x^{10})(1 + x^1 + x^2 + ... + x^{6})(1 + x + x^2)$
$[x^{10}] Large (frac{1 - x^{11}}{1-x})(frac{1 - x^{7}}{1-x})(frac{1 - x^{3}}{1-x})$
$[x^{10}] Large( frac{(1 - x^7 - x^{11} + x^{18}) (1-x^3)}{(1-x)^3})$
$[x^{10}] Large( frac{1 - x^3 - x^7 + x^{10}}{(1-x)^3})$
$[x^{10}] (1 - x^3 - x^7 + x^{10})(1-x)^{-3}$
how to proceed further?
combinatorics generating-functions
add a comment |
$x_1 + x_2 + x_3 = 10, 0 leq x_1 leq 10 , 0 leq x_2 leq 6 , 0 leq x_3 leq 2 $
$[x^{10}] (1 + x^1 + x^2 + ... + x^{10})(1 + x^1 + x^2 + ... + x^{6})(1 + x + x^2)$
$[x^{10}] Large (frac{1 - x^{11}}{1-x})(frac{1 - x^{7}}{1-x})(frac{1 - x^{3}}{1-x})$
$[x^{10}] Large( frac{(1 - x^7 - x^{11} + x^{18}) (1-x^3)}{(1-x)^3})$
$[x^{10}] Large( frac{1 - x^3 - x^7 + x^{10}}{(1-x)^3})$
$[x^{10}] (1 - x^3 - x^7 + x^{10})(1-x)^{-3}$
how to proceed further?
combinatorics generating-functions
3
You can list all the solutions easily by considering the cases $x_3=0,x_3=1,x_3=2$. The number is $21$.
– Kavi Rama Murthy
Nov 21 '18 at 8:33
yes i solved the question using stars and bars and inclusion-exclusion but i wanted to solve it with generating functions
– Mk Utkarsh
Nov 21 '18 at 9:14
add a comment |
$x_1 + x_2 + x_3 = 10, 0 leq x_1 leq 10 , 0 leq x_2 leq 6 , 0 leq x_3 leq 2 $
$[x^{10}] (1 + x^1 + x^2 + ... + x^{10})(1 + x^1 + x^2 + ... + x^{6})(1 + x + x^2)$
$[x^{10}] Large (frac{1 - x^{11}}{1-x})(frac{1 - x^{7}}{1-x})(frac{1 - x^{3}}{1-x})$
$[x^{10}] Large( frac{(1 - x^7 - x^{11} + x^{18}) (1-x^3)}{(1-x)^3})$
$[x^{10}] Large( frac{1 - x^3 - x^7 + x^{10}}{(1-x)^3})$
$[x^{10}] (1 - x^3 - x^7 + x^{10})(1-x)^{-3}$
how to proceed further?
combinatorics generating-functions
$x_1 + x_2 + x_3 = 10, 0 leq x_1 leq 10 , 0 leq x_2 leq 6 , 0 leq x_3 leq 2 $
$[x^{10}] (1 + x^1 + x^2 + ... + x^{10})(1 + x^1 + x^2 + ... + x^{6})(1 + x + x^2)$
$[x^{10}] Large (frac{1 - x^{11}}{1-x})(frac{1 - x^{7}}{1-x})(frac{1 - x^{3}}{1-x})$
$[x^{10}] Large( frac{(1 - x^7 - x^{11} + x^{18}) (1-x^3)}{(1-x)^3})$
$[x^{10}] Large( frac{1 - x^3 - x^7 + x^{10}}{(1-x)^3})$
$[x^{10}] (1 - x^3 - x^7 + x^{10})(1-x)^{-3}$
how to proceed further?
combinatorics generating-functions
combinatorics generating-functions
edited Nov 21 '18 at 8:47
Anurag A
25.6k12249
25.6k12249
asked Nov 21 '18 at 8:28
Mk Utkarsh
89110
89110
3
You can list all the solutions easily by considering the cases $x_3=0,x_3=1,x_3=2$. The number is $21$.
– Kavi Rama Murthy
Nov 21 '18 at 8:33
yes i solved the question using stars and bars and inclusion-exclusion but i wanted to solve it with generating functions
– Mk Utkarsh
Nov 21 '18 at 9:14
add a comment |
3
You can list all the solutions easily by considering the cases $x_3=0,x_3=1,x_3=2$. The number is $21$.
– Kavi Rama Murthy
Nov 21 '18 at 8:33
yes i solved the question using stars and bars and inclusion-exclusion but i wanted to solve it with generating functions
– Mk Utkarsh
Nov 21 '18 at 9:14
3
3
You can list all the solutions easily by considering the cases $x_3=0,x_3=1,x_3=2$. The number is $21$.
– Kavi Rama Murthy
Nov 21 '18 at 8:33
You can list all the solutions easily by considering the cases $x_3=0,x_3=1,x_3=2$. The number is $21$.
– Kavi Rama Murthy
Nov 21 '18 at 8:33
yes i solved the question using stars and bars and inclusion-exclusion but i wanted to solve it with generating functions
– Mk Utkarsh
Nov 21 '18 at 9:14
yes i solved the question using stars and bars and inclusion-exclusion but i wanted to solve it with generating functions
– Mk Utkarsh
Nov 21 '18 at 9:14
add a comment |
1 Answer
1
active
oldest
votes
Using
$$(1-x)^{-n}=1+nx+frac{n(n+1)}{2}x^2+frac{n(n+1)(n+2)}{6}x^3+dotsb+frac{n(n+1)dotsb(n+k-1)}{k!}x^k+dotsb$$
We get
$$(1-x)^{-3}=1+3x+frac{12}{2}x^2+frac{60}{6}x^3+dotsb +frac{3cdot 4cdot dotsb (3+k-1)}{k!}x^k+dotsb$$
Now you want coefficient of $x^{10}$ in $(1 - x^3 - x^7 + x^{10})color{blue}{(1-x)^{-3}}$. This can be obtained by collecting coefficient of $x^{10}$ obtained by multiplying the various terms. What I mean by that is we will obtain $x^{10}$ by multiplying $1$ with $color{blue}{x^{10}}$, $x^3$ with $color{blue}{x^7}$, $x^7$ with $color{blue}{x^3}$ and finally $x^{10}$ with $color{blue}{1}$. Thus the coefficient of $x^{10}$ obtained will be
begin{align*}
&=(1)color{blue}{left(frac{3cdot 4 dotsb 12}{10!}right)}+(-1)color{blue}{left(frac{3cdot 4 dotsb 9}{7!}right)}+(-1)color{blue}{left(frac{3cdot 4 cdot 5}{3!}right)}+(1)color{blue}{(1)}\
&=66-36-10+1\
&=21.
end{align*}
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007431%2fnumber-of-integral-solutions-x-1-x-2-x-3-10%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Using
$$(1-x)^{-n}=1+nx+frac{n(n+1)}{2}x^2+frac{n(n+1)(n+2)}{6}x^3+dotsb+frac{n(n+1)dotsb(n+k-1)}{k!}x^k+dotsb$$
We get
$$(1-x)^{-3}=1+3x+frac{12}{2}x^2+frac{60}{6}x^3+dotsb +frac{3cdot 4cdot dotsb (3+k-1)}{k!}x^k+dotsb$$
Now you want coefficient of $x^{10}$ in $(1 - x^3 - x^7 + x^{10})color{blue}{(1-x)^{-3}}$. This can be obtained by collecting coefficient of $x^{10}$ obtained by multiplying the various terms. What I mean by that is we will obtain $x^{10}$ by multiplying $1$ with $color{blue}{x^{10}}$, $x^3$ with $color{blue}{x^7}$, $x^7$ with $color{blue}{x^3}$ and finally $x^{10}$ with $color{blue}{1}$. Thus the coefficient of $x^{10}$ obtained will be
begin{align*}
&=(1)color{blue}{left(frac{3cdot 4 dotsb 12}{10!}right)}+(-1)color{blue}{left(frac{3cdot 4 dotsb 9}{7!}right)}+(-1)color{blue}{left(frac{3cdot 4 cdot 5}{3!}right)}+(1)color{blue}{(1)}\
&=66-36-10+1\
&=21.
end{align*}
add a comment |
Using
$$(1-x)^{-n}=1+nx+frac{n(n+1)}{2}x^2+frac{n(n+1)(n+2)}{6}x^3+dotsb+frac{n(n+1)dotsb(n+k-1)}{k!}x^k+dotsb$$
We get
$$(1-x)^{-3}=1+3x+frac{12}{2}x^2+frac{60}{6}x^3+dotsb +frac{3cdot 4cdot dotsb (3+k-1)}{k!}x^k+dotsb$$
Now you want coefficient of $x^{10}$ in $(1 - x^3 - x^7 + x^{10})color{blue}{(1-x)^{-3}}$. This can be obtained by collecting coefficient of $x^{10}$ obtained by multiplying the various terms. What I mean by that is we will obtain $x^{10}$ by multiplying $1$ with $color{blue}{x^{10}}$, $x^3$ with $color{blue}{x^7}$, $x^7$ with $color{blue}{x^3}$ and finally $x^{10}$ with $color{blue}{1}$. Thus the coefficient of $x^{10}$ obtained will be
begin{align*}
&=(1)color{blue}{left(frac{3cdot 4 dotsb 12}{10!}right)}+(-1)color{blue}{left(frac{3cdot 4 dotsb 9}{7!}right)}+(-1)color{blue}{left(frac{3cdot 4 cdot 5}{3!}right)}+(1)color{blue}{(1)}\
&=66-36-10+1\
&=21.
end{align*}
add a comment |
Using
$$(1-x)^{-n}=1+nx+frac{n(n+1)}{2}x^2+frac{n(n+1)(n+2)}{6}x^3+dotsb+frac{n(n+1)dotsb(n+k-1)}{k!}x^k+dotsb$$
We get
$$(1-x)^{-3}=1+3x+frac{12}{2}x^2+frac{60}{6}x^3+dotsb +frac{3cdot 4cdot dotsb (3+k-1)}{k!}x^k+dotsb$$
Now you want coefficient of $x^{10}$ in $(1 - x^3 - x^7 + x^{10})color{blue}{(1-x)^{-3}}$. This can be obtained by collecting coefficient of $x^{10}$ obtained by multiplying the various terms. What I mean by that is we will obtain $x^{10}$ by multiplying $1$ with $color{blue}{x^{10}}$, $x^3$ with $color{blue}{x^7}$, $x^7$ with $color{blue}{x^3}$ and finally $x^{10}$ with $color{blue}{1}$. Thus the coefficient of $x^{10}$ obtained will be
begin{align*}
&=(1)color{blue}{left(frac{3cdot 4 dotsb 12}{10!}right)}+(-1)color{blue}{left(frac{3cdot 4 dotsb 9}{7!}right)}+(-1)color{blue}{left(frac{3cdot 4 cdot 5}{3!}right)}+(1)color{blue}{(1)}\
&=66-36-10+1\
&=21.
end{align*}
Using
$$(1-x)^{-n}=1+nx+frac{n(n+1)}{2}x^2+frac{n(n+1)(n+2)}{6}x^3+dotsb+frac{n(n+1)dotsb(n+k-1)}{k!}x^k+dotsb$$
We get
$$(1-x)^{-3}=1+3x+frac{12}{2}x^2+frac{60}{6}x^3+dotsb +frac{3cdot 4cdot dotsb (3+k-1)}{k!}x^k+dotsb$$
Now you want coefficient of $x^{10}$ in $(1 - x^3 - x^7 + x^{10})color{blue}{(1-x)^{-3}}$. This can be obtained by collecting coefficient of $x^{10}$ obtained by multiplying the various terms. What I mean by that is we will obtain $x^{10}$ by multiplying $1$ with $color{blue}{x^{10}}$, $x^3$ with $color{blue}{x^7}$, $x^7$ with $color{blue}{x^3}$ and finally $x^{10}$ with $color{blue}{1}$. Thus the coefficient of $x^{10}$ obtained will be
begin{align*}
&=(1)color{blue}{left(frac{3cdot 4 dotsb 12}{10!}right)}+(-1)color{blue}{left(frac{3cdot 4 dotsb 9}{7!}right)}+(-1)color{blue}{left(frac{3cdot 4 cdot 5}{3!}right)}+(1)color{blue}{(1)}\
&=66-36-10+1\
&=21.
end{align*}
edited Nov 21 '18 at 8:53
answered Nov 21 '18 at 8:44
Anurag A
25.6k12249
25.6k12249
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007431%2fnumber-of-integral-solutions-x-1-x-2-x-3-10%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
You can list all the solutions easily by considering the cases $x_3=0,x_3=1,x_3=2$. The number is $21$.
– Kavi Rama Murthy
Nov 21 '18 at 8:33
yes i solved the question using stars and bars and inclusion-exclusion but i wanted to solve it with generating functions
– Mk Utkarsh
Nov 21 '18 at 9:14