argument of complex number for bode plot












0












$begingroup$


Could someone help me please. I'm looking for the value of $omega$



$text{Argument}(frac{1,6}{(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)})=-135° $



$text{Argument}({1,6})-text{Argument}({(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)}))=-135° $



$text{Atan}(frac{0}{1,6})-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $



$-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $



i'm stucked here :(










share|cite|improve this question











$endgroup$












  • $begingroup$
    What have you tried? The first step would be the interpret the definition of complex argument.
    $endgroup$
    – Matti P.
    Jan 8 at 12:50










  • $begingroup$
    Hint: $tan{-135^{circ}} = 1$
    $endgroup$
    – Matti P.
    Jan 8 at 12:58










  • $begingroup$
    Please @MattiP. Can i write -0,004.w-0,04.w=1 then w=22,72? thank you
    $endgroup$
    – omka
    Jan 10 at 17:14










  • $begingroup$
    I made a plot and it seems like the answer is something like $omega approx 296.1$
    $endgroup$
    – Matti P.
    Jan 11 at 7:11
















0












$begingroup$


Could someone help me please. I'm looking for the value of $omega$



$text{Argument}(frac{1,6}{(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)})=-135° $



$text{Argument}({1,6})-text{Argument}({(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)}))=-135° $



$text{Atan}(frac{0}{1,6})-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $



$-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $



i'm stucked here :(










share|cite|improve this question











$endgroup$












  • $begingroup$
    What have you tried? The first step would be the interpret the definition of complex argument.
    $endgroup$
    – Matti P.
    Jan 8 at 12:50










  • $begingroup$
    Hint: $tan{-135^{circ}} = 1$
    $endgroup$
    – Matti P.
    Jan 8 at 12:58










  • $begingroup$
    Please @MattiP. Can i write -0,004.w-0,04.w=1 then w=22,72? thank you
    $endgroup$
    – omka
    Jan 10 at 17:14










  • $begingroup$
    I made a plot and it seems like the answer is something like $omega approx 296.1$
    $endgroup$
    – Matti P.
    Jan 11 at 7:11














0












0








0





$begingroup$


Could someone help me please. I'm looking for the value of $omega$



$text{Argument}(frac{1,6}{(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)})=-135° $



$text{Argument}({1,6})-text{Argument}({(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)}))=-135° $



$text{Atan}(frac{0}{1,6})-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $



$-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $



i'm stucked here :(










share|cite|improve this question











$endgroup$




Could someone help me please. I'm looking for the value of $omega$



$text{Argument}(frac{1,6}{(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)})=-135° $



$text{Argument}({1,6})-text{Argument}({(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)}))=-135° $



$text{Atan}(frac{0}{1,6})-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $



$-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $



i'm stucked here :(







complex-analysis complex-numbers complex-geometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 13:21







omka

















asked Jan 8 at 12:41









omkaomka

102




102












  • $begingroup$
    What have you tried? The first step would be the interpret the definition of complex argument.
    $endgroup$
    – Matti P.
    Jan 8 at 12:50










  • $begingroup$
    Hint: $tan{-135^{circ}} = 1$
    $endgroup$
    – Matti P.
    Jan 8 at 12:58










  • $begingroup$
    Please @MattiP. Can i write -0,004.w-0,04.w=1 then w=22,72? thank you
    $endgroup$
    – omka
    Jan 10 at 17:14










  • $begingroup$
    I made a plot and it seems like the answer is something like $omega approx 296.1$
    $endgroup$
    – Matti P.
    Jan 11 at 7:11


















  • $begingroup$
    What have you tried? The first step would be the interpret the definition of complex argument.
    $endgroup$
    – Matti P.
    Jan 8 at 12:50










  • $begingroup$
    Hint: $tan{-135^{circ}} = 1$
    $endgroup$
    – Matti P.
    Jan 8 at 12:58










  • $begingroup$
    Please @MattiP. Can i write -0,004.w-0,04.w=1 then w=22,72? thank you
    $endgroup$
    – omka
    Jan 10 at 17:14










  • $begingroup$
    I made a plot and it seems like the answer is something like $omega approx 296.1$
    $endgroup$
    – Matti P.
    Jan 11 at 7:11
















$begingroup$
What have you tried? The first step would be the interpret the definition of complex argument.
$endgroup$
– Matti P.
Jan 8 at 12:50




$begingroup$
What have you tried? The first step would be the interpret the definition of complex argument.
$endgroup$
– Matti P.
Jan 8 at 12:50












$begingroup$
Hint: $tan{-135^{circ}} = 1$
$endgroup$
– Matti P.
Jan 8 at 12:58




$begingroup$
Hint: $tan{-135^{circ}} = 1$
$endgroup$
– Matti P.
Jan 8 at 12:58












$begingroup$
Please @MattiP. Can i write -0,004.w-0,04.w=1 then w=22,72? thank you
$endgroup$
– omka
Jan 10 at 17:14




$begingroup$
Please @MattiP. Can i write -0,004.w-0,04.w=1 then w=22,72? thank you
$endgroup$
– omka
Jan 10 at 17:14












$begingroup$
I made a plot and it seems like the answer is something like $omega approx 296.1$
$endgroup$
– Matti P.
Jan 11 at 7:11




$begingroup$
I made a plot and it seems like the answer is something like $omega approx 296.1$
$endgroup$
– Matti P.
Jan 11 at 7:11










2 Answers
2






active

oldest

votes


















0












$begingroup$

The argument of a complex number is the angle that the complex number makes, when plotted in the complex plane. Therefore,
$$
text{Arg}{left( zright)} = -135^{circ} Rightarrow z text{ is in the third quadrant, $text{Im}{(z)} = text{Re}(z)<0$}
$$

This is because $tan{-135^{circ}} = 1$. Next, let's do some algebra (note that multiplying by $1.6$ doesn't change the argument, therefore we can leave it out):
$$
begin{split}
frac{1}{(1+ai omega)(1+biomega)} &=
frac{(1-ai omega)(1-biomega)}{(1+ai omega)(1-ai omega)(1+biomega)(1-biomega)} \
&=frac{(1-ai omega)(1-biomega)}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-biomega-aiomega+abi^2omega^2}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-abomega^2-(a+b)iomega}{(1+a^2 omega^2)(1+b^2omega^2)} \
end{split}
$$

Now it's easy to separate the imaginary and real part. Equating them, we get
$$
frac{1-abomega^2}{(1+a^2 omega^2)(1+b^2omega^2)} = frac{-(a+b)omega}{(1+a^2 omega^2)(1+b^2omega^2)}
$$

Multiplying by the denominator (and by $-1$), we obtain
$$
abomega^2 +(-a-b)omega -1 = 0
$$

or
$$
omega = frac{ (a+b) pm sqrt{(a+b)^2 + 4 ab} }{ 2ab }
$$

Now we can plug in the values $a=0.004$ and $b=0.04$ to get
$$
omega approx frac{ 0.044 pm 0.0508 }{ 0.00032 }
$$

$ Rightarrow omega approx 21.1 $ or $omega approx 296.1 $ .



In addition, we had the condition that the real and imaginary parts have to be negative. Inserting these values for $omega$ into the original equation, we see that
$$
omega approx 296.1077
$$

is the solution. Just to check, plugging in this value results in
$$
frac{1.6}{(1+0.004i omega)(1+0.04i omega)} approx -0.0614(1+i)
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you so much
    $endgroup$
    – omka
    Jan 13 at 11:28



















0












$begingroup$

The equation directly interpreted, without any argument transforms beyond $arg(z^{-1})=-arg(z)+2kpi j$, gives
$$
(1+0,004j⋅ω)(1+0,04j⋅ω)=re^{j⋅135°}=r'(-1+i)
$$

for some $r=sqrt2 r'>0$. One reads off that the sum of real part and imaginary part on the left side has to be zero, with the imaginary part positive, as it is the case on the right.
$$
0=1-0.00016⋅ω^2 + 0.044⋅ωiff (0.04⋅ω-5.5)^2=0.0016⋅ω^2-0.44⋅ω+5.5^2=10+5.5^2
$$

so that $ω>0$ and $ω=25⋅(5.5pmsqrt{40.25})implies ω=25⋅(5.5+sqrt{40.25})=296.1072192556190..$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you @LutzL
    $endgroup$
    – omka
    Jan 13 at 11:29











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066120%2fargument-of-complex-number-for-bode-plot%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

The argument of a complex number is the angle that the complex number makes, when plotted in the complex plane. Therefore,
$$
text{Arg}{left( zright)} = -135^{circ} Rightarrow z text{ is in the third quadrant, $text{Im}{(z)} = text{Re}(z)<0$}
$$

This is because $tan{-135^{circ}} = 1$. Next, let's do some algebra (note that multiplying by $1.6$ doesn't change the argument, therefore we can leave it out):
$$
begin{split}
frac{1}{(1+ai omega)(1+biomega)} &=
frac{(1-ai omega)(1-biomega)}{(1+ai omega)(1-ai omega)(1+biomega)(1-biomega)} \
&=frac{(1-ai omega)(1-biomega)}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-biomega-aiomega+abi^2omega^2}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-abomega^2-(a+b)iomega}{(1+a^2 omega^2)(1+b^2omega^2)} \
end{split}
$$

Now it's easy to separate the imaginary and real part. Equating them, we get
$$
frac{1-abomega^2}{(1+a^2 omega^2)(1+b^2omega^2)} = frac{-(a+b)omega}{(1+a^2 omega^2)(1+b^2omega^2)}
$$

Multiplying by the denominator (and by $-1$), we obtain
$$
abomega^2 +(-a-b)omega -1 = 0
$$

or
$$
omega = frac{ (a+b) pm sqrt{(a+b)^2 + 4 ab} }{ 2ab }
$$

Now we can plug in the values $a=0.004$ and $b=0.04$ to get
$$
omega approx frac{ 0.044 pm 0.0508 }{ 0.00032 }
$$

$ Rightarrow omega approx 21.1 $ or $omega approx 296.1 $ .



In addition, we had the condition that the real and imaginary parts have to be negative. Inserting these values for $omega$ into the original equation, we see that
$$
omega approx 296.1077
$$

is the solution. Just to check, plugging in this value results in
$$
frac{1.6}{(1+0.004i omega)(1+0.04i omega)} approx -0.0614(1+i)
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you so much
    $endgroup$
    – omka
    Jan 13 at 11:28
















0












$begingroup$

The argument of a complex number is the angle that the complex number makes, when plotted in the complex plane. Therefore,
$$
text{Arg}{left( zright)} = -135^{circ} Rightarrow z text{ is in the third quadrant, $text{Im}{(z)} = text{Re}(z)<0$}
$$

This is because $tan{-135^{circ}} = 1$. Next, let's do some algebra (note that multiplying by $1.6$ doesn't change the argument, therefore we can leave it out):
$$
begin{split}
frac{1}{(1+ai omega)(1+biomega)} &=
frac{(1-ai omega)(1-biomega)}{(1+ai omega)(1-ai omega)(1+biomega)(1-biomega)} \
&=frac{(1-ai omega)(1-biomega)}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-biomega-aiomega+abi^2omega^2}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-abomega^2-(a+b)iomega}{(1+a^2 omega^2)(1+b^2omega^2)} \
end{split}
$$

Now it's easy to separate the imaginary and real part. Equating them, we get
$$
frac{1-abomega^2}{(1+a^2 omega^2)(1+b^2omega^2)} = frac{-(a+b)omega}{(1+a^2 omega^2)(1+b^2omega^2)}
$$

Multiplying by the denominator (and by $-1$), we obtain
$$
abomega^2 +(-a-b)omega -1 = 0
$$

or
$$
omega = frac{ (a+b) pm sqrt{(a+b)^2 + 4 ab} }{ 2ab }
$$

Now we can plug in the values $a=0.004$ and $b=0.04$ to get
$$
omega approx frac{ 0.044 pm 0.0508 }{ 0.00032 }
$$

$ Rightarrow omega approx 21.1 $ or $omega approx 296.1 $ .



In addition, we had the condition that the real and imaginary parts have to be negative. Inserting these values for $omega$ into the original equation, we see that
$$
omega approx 296.1077
$$

is the solution. Just to check, plugging in this value results in
$$
frac{1.6}{(1+0.004i omega)(1+0.04i omega)} approx -0.0614(1+i)
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you so much
    $endgroup$
    – omka
    Jan 13 at 11:28














0












0








0





$begingroup$

The argument of a complex number is the angle that the complex number makes, when plotted in the complex plane. Therefore,
$$
text{Arg}{left( zright)} = -135^{circ} Rightarrow z text{ is in the third quadrant, $text{Im}{(z)} = text{Re}(z)<0$}
$$

This is because $tan{-135^{circ}} = 1$. Next, let's do some algebra (note that multiplying by $1.6$ doesn't change the argument, therefore we can leave it out):
$$
begin{split}
frac{1}{(1+ai omega)(1+biomega)} &=
frac{(1-ai omega)(1-biomega)}{(1+ai omega)(1-ai omega)(1+biomega)(1-biomega)} \
&=frac{(1-ai omega)(1-biomega)}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-biomega-aiomega+abi^2omega^2}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-abomega^2-(a+b)iomega}{(1+a^2 omega^2)(1+b^2omega^2)} \
end{split}
$$

Now it's easy to separate the imaginary and real part. Equating them, we get
$$
frac{1-abomega^2}{(1+a^2 omega^2)(1+b^2omega^2)} = frac{-(a+b)omega}{(1+a^2 omega^2)(1+b^2omega^2)}
$$

Multiplying by the denominator (and by $-1$), we obtain
$$
abomega^2 +(-a-b)omega -1 = 0
$$

or
$$
omega = frac{ (a+b) pm sqrt{(a+b)^2 + 4 ab} }{ 2ab }
$$

Now we can plug in the values $a=0.004$ and $b=0.04$ to get
$$
omega approx frac{ 0.044 pm 0.0508 }{ 0.00032 }
$$

$ Rightarrow omega approx 21.1 $ or $omega approx 296.1 $ .



In addition, we had the condition that the real and imaginary parts have to be negative. Inserting these values for $omega$ into the original equation, we see that
$$
omega approx 296.1077
$$

is the solution. Just to check, plugging in this value results in
$$
frac{1.6}{(1+0.004i omega)(1+0.04i omega)} approx -0.0614(1+i)
$$






share|cite|improve this answer











$endgroup$



The argument of a complex number is the angle that the complex number makes, when plotted in the complex plane. Therefore,
$$
text{Arg}{left( zright)} = -135^{circ} Rightarrow z text{ is in the third quadrant, $text{Im}{(z)} = text{Re}(z)<0$}
$$

This is because $tan{-135^{circ}} = 1$. Next, let's do some algebra (note that multiplying by $1.6$ doesn't change the argument, therefore we can leave it out):
$$
begin{split}
frac{1}{(1+ai omega)(1+biomega)} &=
frac{(1-ai omega)(1-biomega)}{(1+ai omega)(1-ai omega)(1+biomega)(1-biomega)} \
&=frac{(1-ai omega)(1-biomega)}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-biomega-aiomega+abi^2omega^2}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-abomega^2-(a+b)iomega}{(1+a^2 omega^2)(1+b^2omega^2)} \
end{split}
$$

Now it's easy to separate the imaginary and real part. Equating them, we get
$$
frac{1-abomega^2}{(1+a^2 omega^2)(1+b^2omega^2)} = frac{-(a+b)omega}{(1+a^2 omega^2)(1+b^2omega^2)}
$$

Multiplying by the denominator (and by $-1$), we obtain
$$
abomega^2 +(-a-b)omega -1 = 0
$$

or
$$
omega = frac{ (a+b) pm sqrt{(a+b)^2 + 4 ab} }{ 2ab }
$$

Now we can plug in the values $a=0.004$ and $b=0.04$ to get
$$
omega approx frac{ 0.044 pm 0.0508 }{ 0.00032 }
$$

$ Rightarrow omega approx 21.1 $ or $omega approx 296.1 $ .



In addition, we had the condition that the real and imaginary parts have to be negative. Inserting these values for $omega$ into the original equation, we see that
$$
omega approx 296.1077
$$

is the solution. Just to check, plugging in this value results in
$$
frac{1.6}{(1+0.004i omega)(1+0.04i omega)} approx -0.0614(1+i)
$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 11 at 8:15

























answered Jan 11 at 6:48









Matti P.Matti P.

1,900413




1,900413












  • $begingroup$
    Thank you so much
    $endgroup$
    – omka
    Jan 13 at 11:28


















  • $begingroup$
    Thank you so much
    $endgroup$
    – omka
    Jan 13 at 11:28
















$begingroup$
Thank you so much
$endgroup$
– omka
Jan 13 at 11:28




$begingroup$
Thank you so much
$endgroup$
– omka
Jan 13 at 11:28











0












$begingroup$

The equation directly interpreted, without any argument transforms beyond $arg(z^{-1})=-arg(z)+2kpi j$, gives
$$
(1+0,004j⋅ω)(1+0,04j⋅ω)=re^{j⋅135°}=r'(-1+i)
$$

for some $r=sqrt2 r'>0$. One reads off that the sum of real part and imaginary part on the left side has to be zero, with the imaginary part positive, as it is the case on the right.
$$
0=1-0.00016⋅ω^2 + 0.044⋅ωiff (0.04⋅ω-5.5)^2=0.0016⋅ω^2-0.44⋅ω+5.5^2=10+5.5^2
$$

so that $ω>0$ and $ω=25⋅(5.5pmsqrt{40.25})implies ω=25⋅(5.5+sqrt{40.25})=296.1072192556190..$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you @LutzL
    $endgroup$
    – omka
    Jan 13 at 11:29
















0












$begingroup$

The equation directly interpreted, without any argument transforms beyond $arg(z^{-1})=-arg(z)+2kpi j$, gives
$$
(1+0,004j⋅ω)(1+0,04j⋅ω)=re^{j⋅135°}=r'(-1+i)
$$

for some $r=sqrt2 r'>0$. One reads off that the sum of real part and imaginary part on the left side has to be zero, with the imaginary part positive, as it is the case on the right.
$$
0=1-0.00016⋅ω^2 + 0.044⋅ωiff (0.04⋅ω-5.5)^2=0.0016⋅ω^2-0.44⋅ω+5.5^2=10+5.5^2
$$

so that $ω>0$ and $ω=25⋅(5.5pmsqrt{40.25})implies ω=25⋅(5.5+sqrt{40.25})=296.1072192556190..$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you @LutzL
    $endgroup$
    – omka
    Jan 13 at 11:29














0












0








0





$begingroup$

The equation directly interpreted, without any argument transforms beyond $arg(z^{-1})=-arg(z)+2kpi j$, gives
$$
(1+0,004j⋅ω)(1+0,04j⋅ω)=re^{j⋅135°}=r'(-1+i)
$$

for some $r=sqrt2 r'>0$. One reads off that the sum of real part and imaginary part on the left side has to be zero, with the imaginary part positive, as it is the case on the right.
$$
0=1-0.00016⋅ω^2 + 0.044⋅ωiff (0.04⋅ω-5.5)^2=0.0016⋅ω^2-0.44⋅ω+5.5^2=10+5.5^2
$$

so that $ω>0$ and $ω=25⋅(5.5pmsqrt{40.25})implies ω=25⋅(5.5+sqrt{40.25})=296.1072192556190..$.






share|cite|improve this answer









$endgroup$



The equation directly interpreted, without any argument transforms beyond $arg(z^{-1})=-arg(z)+2kpi j$, gives
$$
(1+0,004j⋅ω)(1+0,04j⋅ω)=re^{j⋅135°}=r'(-1+i)
$$

for some $r=sqrt2 r'>0$. One reads off that the sum of real part and imaginary part on the left side has to be zero, with the imaginary part positive, as it is the case on the right.
$$
0=1-0.00016⋅ω^2 + 0.044⋅ωiff (0.04⋅ω-5.5)^2=0.0016⋅ω^2-0.44⋅ω+5.5^2=10+5.5^2
$$

so that $ω>0$ and $ω=25⋅(5.5pmsqrt{40.25})implies ω=25⋅(5.5+sqrt{40.25})=296.1072192556190..$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 11 at 11:53









LutzLLutzL

57.6k42054




57.6k42054












  • $begingroup$
    Thank you @LutzL
    $endgroup$
    – omka
    Jan 13 at 11:29


















  • $begingroup$
    Thank you @LutzL
    $endgroup$
    – omka
    Jan 13 at 11:29
















$begingroup$
Thank you @LutzL
$endgroup$
– omka
Jan 13 at 11:29




$begingroup$
Thank you @LutzL
$endgroup$
– omka
Jan 13 at 11:29


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066120%2fargument-of-complex-number-for-bode-plot%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

Npm cannot find a required file even through it is in the searched directory