argument of complex number for bode plot
$begingroup$
Could someone help me please. I'm looking for the value of $omega$
$text{Argument}(frac{1,6}{(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)})=-135° $
$text{Argument}({1,6})-text{Argument}({(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)}))=-135° $
$text{Atan}(frac{0}{1,6})-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $
$-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $
i'm stucked here :(
complex-analysis complex-numbers complex-geometry
$endgroup$
add a comment |
$begingroup$
Could someone help me please. I'm looking for the value of $omega$
$text{Argument}(frac{1,6}{(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)})=-135° $
$text{Argument}({1,6})-text{Argument}({(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)}))=-135° $
$text{Atan}(frac{0}{1,6})-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $
$-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $
i'm stucked here :(
complex-analysis complex-numbers complex-geometry
$endgroup$
$begingroup$
What have you tried? The first step would be the interpret the definition of complex argument.
$endgroup$
– Matti P.
Jan 8 at 12:50
$begingroup$
Hint: $tan{-135^{circ}} = 1$
$endgroup$
– Matti P.
Jan 8 at 12:58
$begingroup$
Please @MattiP. Can i write -0,004.w-0,04.w=1 then w=22,72? thank you
$endgroup$
– omka
Jan 10 at 17:14
$begingroup$
I made a plot and it seems like the answer is something like $omega approx 296.1$
$endgroup$
– Matti P.
Jan 11 at 7:11
add a comment |
$begingroup$
Could someone help me please. I'm looking for the value of $omega$
$text{Argument}(frac{1,6}{(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)})=-135° $
$text{Argument}({1,6})-text{Argument}({(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)}))=-135° $
$text{Atan}(frac{0}{1,6})-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $
$-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $
i'm stucked here :(
complex-analysis complex-numbers complex-geometry
$endgroup$
Could someone help me please. I'm looking for the value of $omega$
$text{Argument}(frac{1,6}{(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)})=-135° $
$text{Argument}({1,6})-text{Argument}({(1+0,004text{j}cdotomega)(1+0,04text{j}cdotomega)}))=-135° $
$text{Atan}(frac{0}{1,6})-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $
$-text{Atan}({frac{0,004cdotomega}{1})-text{Atan}(frac{0,04cdotomega}{1})}=-135° $
i'm stucked here :(
complex-analysis complex-numbers complex-geometry
complex-analysis complex-numbers complex-geometry
edited Jan 8 at 13:21
omka
asked Jan 8 at 12:41
omkaomka
102
102
$begingroup$
What have you tried? The first step would be the interpret the definition of complex argument.
$endgroup$
– Matti P.
Jan 8 at 12:50
$begingroup$
Hint: $tan{-135^{circ}} = 1$
$endgroup$
– Matti P.
Jan 8 at 12:58
$begingroup$
Please @MattiP. Can i write -0,004.w-0,04.w=1 then w=22,72? thank you
$endgroup$
– omka
Jan 10 at 17:14
$begingroup$
I made a plot and it seems like the answer is something like $omega approx 296.1$
$endgroup$
– Matti P.
Jan 11 at 7:11
add a comment |
$begingroup$
What have you tried? The first step would be the interpret the definition of complex argument.
$endgroup$
– Matti P.
Jan 8 at 12:50
$begingroup$
Hint: $tan{-135^{circ}} = 1$
$endgroup$
– Matti P.
Jan 8 at 12:58
$begingroup$
Please @MattiP. Can i write -0,004.w-0,04.w=1 then w=22,72? thank you
$endgroup$
– omka
Jan 10 at 17:14
$begingroup$
I made a plot and it seems like the answer is something like $omega approx 296.1$
$endgroup$
– Matti P.
Jan 11 at 7:11
$begingroup$
What have you tried? The first step would be the interpret the definition of complex argument.
$endgroup$
– Matti P.
Jan 8 at 12:50
$begingroup$
What have you tried? The first step would be the interpret the definition of complex argument.
$endgroup$
– Matti P.
Jan 8 at 12:50
$begingroup$
Hint: $tan{-135^{circ}} = 1$
$endgroup$
– Matti P.
Jan 8 at 12:58
$begingroup$
Hint: $tan{-135^{circ}} = 1$
$endgroup$
– Matti P.
Jan 8 at 12:58
$begingroup$
Please @MattiP. Can i write -0,004.w-0,04.w=1 then w=22,72? thank you
$endgroup$
– omka
Jan 10 at 17:14
$begingroup$
Please @MattiP. Can i write -0,004.w-0,04.w=1 then w=22,72? thank you
$endgroup$
– omka
Jan 10 at 17:14
$begingroup$
I made a plot and it seems like the answer is something like $omega approx 296.1$
$endgroup$
– Matti P.
Jan 11 at 7:11
$begingroup$
I made a plot and it seems like the answer is something like $omega approx 296.1$
$endgroup$
– Matti P.
Jan 11 at 7:11
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The argument of a complex number is the angle that the complex number makes, when plotted in the complex plane. Therefore,
$$
text{Arg}{left( zright)} = -135^{circ} Rightarrow z text{ is in the third quadrant, $text{Im}{(z)} = text{Re}(z)<0$}
$$
This is because $tan{-135^{circ}} = 1$. Next, let's do some algebra (note that multiplying by $1.6$ doesn't change the argument, therefore we can leave it out):
$$
begin{split}
frac{1}{(1+ai omega)(1+biomega)} &=
frac{(1-ai omega)(1-biomega)}{(1+ai omega)(1-ai omega)(1+biomega)(1-biomega)} \
&=frac{(1-ai omega)(1-biomega)}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-biomega-aiomega+abi^2omega^2}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-abomega^2-(a+b)iomega}{(1+a^2 omega^2)(1+b^2omega^2)} \
end{split}
$$
Now it's easy to separate the imaginary and real part. Equating them, we get
$$
frac{1-abomega^2}{(1+a^2 omega^2)(1+b^2omega^2)} = frac{-(a+b)omega}{(1+a^2 omega^2)(1+b^2omega^2)}
$$
Multiplying by the denominator (and by $-1$), we obtain
$$
abomega^2 +(-a-b)omega -1 = 0
$$
or
$$
omega = frac{ (a+b) pm sqrt{(a+b)^2 + 4 ab} }{ 2ab }
$$
Now we can plug in the values $a=0.004$ and $b=0.04$ to get
$$
omega approx frac{ 0.044 pm 0.0508 }{ 0.00032 }
$$
$ Rightarrow omega approx 21.1 $ or $omega approx 296.1 $ .
In addition, we had the condition that the real and imaginary parts have to be negative. Inserting these values for $omega$ into the original equation, we see that
$$
omega approx 296.1077
$$
is the solution. Just to check, plugging in this value results in
$$
frac{1.6}{(1+0.004i omega)(1+0.04i omega)} approx -0.0614(1+i)
$$
$endgroup$
$begingroup$
Thank you so much
$endgroup$
– omka
Jan 13 at 11:28
add a comment |
$begingroup$
The equation directly interpreted, without any argument transforms beyond $arg(z^{-1})=-arg(z)+2kpi j$, gives
$$
(1+0,004j⋅ω)(1+0,04j⋅ω)=re^{j⋅135°}=r'(-1+i)
$$
for some $r=sqrt2 r'>0$. One reads off that the sum of real part and imaginary part on the left side has to be zero, with the imaginary part positive, as it is the case on the right.
$$
0=1-0.00016⋅ω^2 + 0.044⋅ωiff (0.04⋅ω-5.5)^2=0.0016⋅ω^2-0.44⋅ω+5.5^2=10+5.5^2
$$
so that $ω>0$ and $ω=25⋅(5.5pmsqrt{40.25})implies ω=25⋅(5.5+sqrt{40.25})=296.1072192556190..$.
$endgroup$
$begingroup$
Thank you @LutzL
$endgroup$
– omka
Jan 13 at 11:29
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066120%2fargument-of-complex-number-for-bode-plot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The argument of a complex number is the angle that the complex number makes, when plotted in the complex plane. Therefore,
$$
text{Arg}{left( zright)} = -135^{circ} Rightarrow z text{ is in the third quadrant, $text{Im}{(z)} = text{Re}(z)<0$}
$$
This is because $tan{-135^{circ}} = 1$. Next, let's do some algebra (note that multiplying by $1.6$ doesn't change the argument, therefore we can leave it out):
$$
begin{split}
frac{1}{(1+ai omega)(1+biomega)} &=
frac{(1-ai omega)(1-biomega)}{(1+ai omega)(1-ai omega)(1+biomega)(1-biomega)} \
&=frac{(1-ai omega)(1-biomega)}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-biomega-aiomega+abi^2omega^2}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-abomega^2-(a+b)iomega}{(1+a^2 omega^2)(1+b^2omega^2)} \
end{split}
$$
Now it's easy to separate the imaginary and real part. Equating them, we get
$$
frac{1-abomega^2}{(1+a^2 omega^2)(1+b^2omega^2)} = frac{-(a+b)omega}{(1+a^2 omega^2)(1+b^2omega^2)}
$$
Multiplying by the denominator (and by $-1$), we obtain
$$
abomega^2 +(-a-b)omega -1 = 0
$$
or
$$
omega = frac{ (a+b) pm sqrt{(a+b)^2 + 4 ab} }{ 2ab }
$$
Now we can plug in the values $a=0.004$ and $b=0.04$ to get
$$
omega approx frac{ 0.044 pm 0.0508 }{ 0.00032 }
$$
$ Rightarrow omega approx 21.1 $ or $omega approx 296.1 $ .
In addition, we had the condition that the real and imaginary parts have to be negative. Inserting these values for $omega$ into the original equation, we see that
$$
omega approx 296.1077
$$
is the solution. Just to check, plugging in this value results in
$$
frac{1.6}{(1+0.004i omega)(1+0.04i omega)} approx -0.0614(1+i)
$$
$endgroup$
$begingroup$
Thank you so much
$endgroup$
– omka
Jan 13 at 11:28
add a comment |
$begingroup$
The argument of a complex number is the angle that the complex number makes, when plotted in the complex plane. Therefore,
$$
text{Arg}{left( zright)} = -135^{circ} Rightarrow z text{ is in the third quadrant, $text{Im}{(z)} = text{Re}(z)<0$}
$$
This is because $tan{-135^{circ}} = 1$. Next, let's do some algebra (note that multiplying by $1.6$ doesn't change the argument, therefore we can leave it out):
$$
begin{split}
frac{1}{(1+ai omega)(1+biomega)} &=
frac{(1-ai omega)(1-biomega)}{(1+ai omega)(1-ai omega)(1+biomega)(1-biomega)} \
&=frac{(1-ai omega)(1-biomega)}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-biomega-aiomega+abi^2omega^2}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-abomega^2-(a+b)iomega}{(1+a^2 omega^2)(1+b^2omega^2)} \
end{split}
$$
Now it's easy to separate the imaginary and real part. Equating them, we get
$$
frac{1-abomega^2}{(1+a^2 omega^2)(1+b^2omega^2)} = frac{-(a+b)omega}{(1+a^2 omega^2)(1+b^2omega^2)}
$$
Multiplying by the denominator (and by $-1$), we obtain
$$
abomega^2 +(-a-b)omega -1 = 0
$$
or
$$
omega = frac{ (a+b) pm sqrt{(a+b)^2 + 4 ab} }{ 2ab }
$$
Now we can plug in the values $a=0.004$ and $b=0.04$ to get
$$
omega approx frac{ 0.044 pm 0.0508 }{ 0.00032 }
$$
$ Rightarrow omega approx 21.1 $ or $omega approx 296.1 $ .
In addition, we had the condition that the real and imaginary parts have to be negative. Inserting these values for $omega$ into the original equation, we see that
$$
omega approx 296.1077
$$
is the solution. Just to check, plugging in this value results in
$$
frac{1.6}{(1+0.004i omega)(1+0.04i omega)} approx -0.0614(1+i)
$$
$endgroup$
$begingroup$
Thank you so much
$endgroup$
– omka
Jan 13 at 11:28
add a comment |
$begingroup$
The argument of a complex number is the angle that the complex number makes, when plotted in the complex plane. Therefore,
$$
text{Arg}{left( zright)} = -135^{circ} Rightarrow z text{ is in the third quadrant, $text{Im}{(z)} = text{Re}(z)<0$}
$$
This is because $tan{-135^{circ}} = 1$. Next, let's do some algebra (note that multiplying by $1.6$ doesn't change the argument, therefore we can leave it out):
$$
begin{split}
frac{1}{(1+ai omega)(1+biomega)} &=
frac{(1-ai omega)(1-biomega)}{(1+ai omega)(1-ai omega)(1+biomega)(1-biomega)} \
&=frac{(1-ai omega)(1-biomega)}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-biomega-aiomega+abi^2omega^2}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-abomega^2-(a+b)iomega}{(1+a^2 omega^2)(1+b^2omega^2)} \
end{split}
$$
Now it's easy to separate the imaginary and real part. Equating them, we get
$$
frac{1-abomega^2}{(1+a^2 omega^2)(1+b^2omega^2)} = frac{-(a+b)omega}{(1+a^2 omega^2)(1+b^2omega^2)}
$$
Multiplying by the denominator (and by $-1$), we obtain
$$
abomega^2 +(-a-b)omega -1 = 0
$$
or
$$
omega = frac{ (a+b) pm sqrt{(a+b)^2 + 4 ab} }{ 2ab }
$$
Now we can plug in the values $a=0.004$ and $b=0.04$ to get
$$
omega approx frac{ 0.044 pm 0.0508 }{ 0.00032 }
$$
$ Rightarrow omega approx 21.1 $ or $omega approx 296.1 $ .
In addition, we had the condition that the real and imaginary parts have to be negative. Inserting these values for $omega$ into the original equation, we see that
$$
omega approx 296.1077
$$
is the solution. Just to check, plugging in this value results in
$$
frac{1.6}{(1+0.004i omega)(1+0.04i omega)} approx -0.0614(1+i)
$$
$endgroup$
The argument of a complex number is the angle that the complex number makes, when plotted in the complex plane. Therefore,
$$
text{Arg}{left( zright)} = -135^{circ} Rightarrow z text{ is in the third quadrant, $text{Im}{(z)} = text{Re}(z)<0$}
$$
This is because $tan{-135^{circ}} = 1$. Next, let's do some algebra (note that multiplying by $1.6$ doesn't change the argument, therefore we can leave it out):
$$
begin{split}
frac{1}{(1+ai omega)(1+biomega)} &=
frac{(1-ai omega)(1-biomega)}{(1+ai omega)(1-ai omega)(1+biomega)(1-biomega)} \
&=frac{(1-ai omega)(1-biomega)}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-biomega-aiomega+abi^2omega^2}{(1+a^2 omega^2)(1+b^2omega^2)} \
&= frac{1-abomega^2-(a+b)iomega}{(1+a^2 omega^2)(1+b^2omega^2)} \
end{split}
$$
Now it's easy to separate the imaginary and real part. Equating them, we get
$$
frac{1-abomega^2}{(1+a^2 omega^2)(1+b^2omega^2)} = frac{-(a+b)omega}{(1+a^2 omega^2)(1+b^2omega^2)}
$$
Multiplying by the denominator (and by $-1$), we obtain
$$
abomega^2 +(-a-b)omega -1 = 0
$$
or
$$
omega = frac{ (a+b) pm sqrt{(a+b)^2 + 4 ab} }{ 2ab }
$$
Now we can plug in the values $a=0.004$ and $b=0.04$ to get
$$
omega approx frac{ 0.044 pm 0.0508 }{ 0.00032 }
$$
$ Rightarrow omega approx 21.1 $ or $omega approx 296.1 $ .
In addition, we had the condition that the real and imaginary parts have to be negative. Inserting these values for $omega$ into the original equation, we see that
$$
omega approx 296.1077
$$
is the solution. Just to check, plugging in this value results in
$$
frac{1.6}{(1+0.004i omega)(1+0.04i omega)} approx -0.0614(1+i)
$$
edited Jan 11 at 8:15
answered Jan 11 at 6:48
Matti P.Matti P.
1,900413
1,900413
$begingroup$
Thank you so much
$endgroup$
– omka
Jan 13 at 11:28
add a comment |
$begingroup$
Thank you so much
$endgroup$
– omka
Jan 13 at 11:28
$begingroup$
Thank you so much
$endgroup$
– omka
Jan 13 at 11:28
$begingroup$
Thank you so much
$endgroup$
– omka
Jan 13 at 11:28
add a comment |
$begingroup$
The equation directly interpreted, without any argument transforms beyond $arg(z^{-1})=-arg(z)+2kpi j$, gives
$$
(1+0,004j⋅ω)(1+0,04j⋅ω)=re^{j⋅135°}=r'(-1+i)
$$
for some $r=sqrt2 r'>0$. One reads off that the sum of real part and imaginary part on the left side has to be zero, with the imaginary part positive, as it is the case on the right.
$$
0=1-0.00016⋅ω^2 + 0.044⋅ωiff (0.04⋅ω-5.5)^2=0.0016⋅ω^2-0.44⋅ω+5.5^2=10+5.5^2
$$
so that $ω>0$ and $ω=25⋅(5.5pmsqrt{40.25})implies ω=25⋅(5.5+sqrt{40.25})=296.1072192556190..$.
$endgroup$
$begingroup$
Thank you @LutzL
$endgroup$
– omka
Jan 13 at 11:29
add a comment |
$begingroup$
The equation directly interpreted, without any argument transforms beyond $arg(z^{-1})=-arg(z)+2kpi j$, gives
$$
(1+0,004j⋅ω)(1+0,04j⋅ω)=re^{j⋅135°}=r'(-1+i)
$$
for some $r=sqrt2 r'>0$. One reads off that the sum of real part and imaginary part on the left side has to be zero, with the imaginary part positive, as it is the case on the right.
$$
0=1-0.00016⋅ω^2 + 0.044⋅ωiff (0.04⋅ω-5.5)^2=0.0016⋅ω^2-0.44⋅ω+5.5^2=10+5.5^2
$$
so that $ω>0$ and $ω=25⋅(5.5pmsqrt{40.25})implies ω=25⋅(5.5+sqrt{40.25})=296.1072192556190..$.
$endgroup$
$begingroup$
Thank you @LutzL
$endgroup$
– omka
Jan 13 at 11:29
add a comment |
$begingroup$
The equation directly interpreted, without any argument transforms beyond $arg(z^{-1})=-arg(z)+2kpi j$, gives
$$
(1+0,004j⋅ω)(1+0,04j⋅ω)=re^{j⋅135°}=r'(-1+i)
$$
for some $r=sqrt2 r'>0$. One reads off that the sum of real part and imaginary part on the left side has to be zero, with the imaginary part positive, as it is the case on the right.
$$
0=1-0.00016⋅ω^2 + 0.044⋅ωiff (0.04⋅ω-5.5)^2=0.0016⋅ω^2-0.44⋅ω+5.5^2=10+5.5^2
$$
so that $ω>0$ and $ω=25⋅(5.5pmsqrt{40.25})implies ω=25⋅(5.5+sqrt{40.25})=296.1072192556190..$.
$endgroup$
The equation directly interpreted, without any argument transforms beyond $arg(z^{-1})=-arg(z)+2kpi j$, gives
$$
(1+0,004j⋅ω)(1+0,04j⋅ω)=re^{j⋅135°}=r'(-1+i)
$$
for some $r=sqrt2 r'>0$. One reads off that the sum of real part and imaginary part on the left side has to be zero, with the imaginary part positive, as it is the case on the right.
$$
0=1-0.00016⋅ω^2 + 0.044⋅ωiff (0.04⋅ω-5.5)^2=0.0016⋅ω^2-0.44⋅ω+5.5^2=10+5.5^2
$$
so that $ω>0$ and $ω=25⋅(5.5pmsqrt{40.25})implies ω=25⋅(5.5+sqrt{40.25})=296.1072192556190..$.
answered Jan 11 at 11:53
LutzLLutzL
57.6k42054
57.6k42054
$begingroup$
Thank you @LutzL
$endgroup$
– omka
Jan 13 at 11:29
add a comment |
$begingroup$
Thank you @LutzL
$endgroup$
– omka
Jan 13 at 11:29
$begingroup$
Thank you @LutzL
$endgroup$
– omka
Jan 13 at 11:29
$begingroup$
Thank you @LutzL
$endgroup$
– omka
Jan 13 at 11:29
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066120%2fargument-of-complex-number-for-bode-plot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What have you tried? The first step would be the interpret the definition of complex argument.
$endgroup$
– Matti P.
Jan 8 at 12:50
$begingroup$
Hint: $tan{-135^{circ}} = 1$
$endgroup$
– Matti P.
Jan 8 at 12:58
$begingroup$
Please @MattiP. Can i write -0,004.w-0,04.w=1 then w=22,72? thank you
$endgroup$
– omka
Jan 10 at 17:14
$begingroup$
I made a plot and it seems like the answer is something like $omega approx 296.1$
$endgroup$
– Matti P.
Jan 11 at 7:11