Prove that $frac{a}{csqrt{a^2+1}}+frac{b}{asqrt{b^2+1}}+frac{c}{bsqrt{c^2+1}}ge frac{3}{2}$
$begingroup$
Let $a,b,cin Bbb R^+$ such that $a+b+c=abc$. Prove that $$frac{a}{csqrt{a^2+1}}+frac{b}{asqrt{b^2+1}}+frac{c}{bsqrt{c^2+1}}ge frac{3}{2}$$
Idea 1.From $a+b+c=abcLeftrightarrow frac{1}{ab}+frac{1}{bc}+frac{1}{ca}=1$. Let $left(frac{1}{a};frac{1}{b};frac{1}{c}right)rightarrow left(x;y;zright)$
So i need to prove $frac{z}{sqrt{1+x^2}}+frac{y}{sqrt{z^2+1}}+frac{x}{sqrt{y^2+1}}ge frac{3}{2}$
By AM-GM $frac{x}{sqrt{y^2+1}}=frac{x}{sqrt{left(x+yright)left(y+zright)}}ge frac{2x}{x+2y+z}$
$$LHSge 2sum _{cyc}frac{x}{x+2y+z}=2sum _{cyc}frac{x^2}{x^2+2xy+xz}ge 2frac{left(x+y+zright)^2}{sum _{cyc}x^2+sum _{cyc}3xy}$$
Or $4left(x+y+zright)^2ge 3left(x^2+y^2+z^2+3xy+3yz+3xzright)$
Or $x^2+y^2+z^2ge xy+yz+xz$ (true)
Idea 2. By Holder $$left(sum _{cyc}frac{a}{csqrt{a^2+1}}right)left(sum _{cyc}frac{a}{csqrt{a^2+1}}right)sum _{cyc}left(c^2left(a^2+1right)aright)ge left(sum _{cyc}aright)^3$$
I will prove the inequality $frac{left(a+b+cright)^3}{c^2aleft(a^2+1right)+a^2bleft(b^2+1right)+b^2cleft(c^2+1right)}ge frac{3}{2}$
Or $frac{abcleft(a+b+cright)^3}{left(a+b+cright)left(a^2b^3+b^2c^3+c^2a^3right)+abcleft(a^2b+b^2c+c^2aright)}ge frac{3}{2}$
I tried $SOS$ but failed help me improve "idea 2" use Holder
inequality radicals geometric-inequalities holder-inequality rearrangement-inequality
$endgroup$
add a comment |
$begingroup$
Let $a,b,cin Bbb R^+$ such that $a+b+c=abc$. Prove that $$frac{a}{csqrt{a^2+1}}+frac{b}{asqrt{b^2+1}}+frac{c}{bsqrt{c^2+1}}ge frac{3}{2}$$
Idea 1.From $a+b+c=abcLeftrightarrow frac{1}{ab}+frac{1}{bc}+frac{1}{ca}=1$. Let $left(frac{1}{a};frac{1}{b};frac{1}{c}right)rightarrow left(x;y;zright)$
So i need to prove $frac{z}{sqrt{1+x^2}}+frac{y}{sqrt{z^2+1}}+frac{x}{sqrt{y^2+1}}ge frac{3}{2}$
By AM-GM $frac{x}{sqrt{y^2+1}}=frac{x}{sqrt{left(x+yright)left(y+zright)}}ge frac{2x}{x+2y+z}$
$$LHSge 2sum _{cyc}frac{x}{x+2y+z}=2sum _{cyc}frac{x^2}{x^2+2xy+xz}ge 2frac{left(x+y+zright)^2}{sum _{cyc}x^2+sum _{cyc}3xy}$$
Or $4left(x+y+zright)^2ge 3left(x^2+y^2+z^2+3xy+3yz+3xzright)$
Or $x^2+y^2+z^2ge xy+yz+xz$ (true)
Idea 2. By Holder $$left(sum _{cyc}frac{a}{csqrt{a^2+1}}right)left(sum _{cyc}frac{a}{csqrt{a^2+1}}right)sum _{cyc}left(c^2left(a^2+1right)aright)ge left(sum _{cyc}aright)^3$$
I will prove the inequality $frac{left(a+b+cright)^3}{c^2aleft(a^2+1right)+a^2bleft(b^2+1right)+b^2cleft(c^2+1right)}ge frac{3}{2}$
Or $frac{abcleft(a+b+cright)^3}{left(a+b+cright)left(a^2b^3+b^2c^3+c^2a^3right)+abcleft(a^2b+b^2c+c^2aright)}ge frac{3}{2}$
I tried $SOS$ but failed help me improve "idea 2" use Holder
inequality radicals geometric-inequalities holder-inequality rearrangement-inequality
$endgroup$
add a comment |
$begingroup$
Let $a,b,cin Bbb R^+$ such that $a+b+c=abc$. Prove that $$frac{a}{csqrt{a^2+1}}+frac{b}{asqrt{b^2+1}}+frac{c}{bsqrt{c^2+1}}ge frac{3}{2}$$
Idea 1.From $a+b+c=abcLeftrightarrow frac{1}{ab}+frac{1}{bc}+frac{1}{ca}=1$. Let $left(frac{1}{a};frac{1}{b};frac{1}{c}right)rightarrow left(x;y;zright)$
So i need to prove $frac{z}{sqrt{1+x^2}}+frac{y}{sqrt{z^2+1}}+frac{x}{sqrt{y^2+1}}ge frac{3}{2}$
By AM-GM $frac{x}{sqrt{y^2+1}}=frac{x}{sqrt{left(x+yright)left(y+zright)}}ge frac{2x}{x+2y+z}$
$$LHSge 2sum _{cyc}frac{x}{x+2y+z}=2sum _{cyc}frac{x^2}{x^2+2xy+xz}ge 2frac{left(x+y+zright)^2}{sum _{cyc}x^2+sum _{cyc}3xy}$$
Or $4left(x+y+zright)^2ge 3left(x^2+y^2+z^2+3xy+3yz+3xzright)$
Or $x^2+y^2+z^2ge xy+yz+xz$ (true)
Idea 2. By Holder $$left(sum _{cyc}frac{a}{csqrt{a^2+1}}right)left(sum _{cyc}frac{a}{csqrt{a^2+1}}right)sum _{cyc}left(c^2left(a^2+1right)aright)ge left(sum _{cyc}aright)^3$$
I will prove the inequality $frac{left(a+b+cright)^3}{c^2aleft(a^2+1right)+a^2bleft(b^2+1right)+b^2cleft(c^2+1right)}ge frac{3}{2}$
Or $frac{abcleft(a+b+cright)^3}{left(a+b+cright)left(a^2b^3+b^2c^3+c^2a^3right)+abcleft(a^2b+b^2c+c^2aright)}ge frac{3}{2}$
I tried $SOS$ but failed help me improve "idea 2" use Holder
inequality radicals geometric-inequalities holder-inequality rearrangement-inequality
$endgroup$
Let $a,b,cin Bbb R^+$ such that $a+b+c=abc$. Prove that $$frac{a}{csqrt{a^2+1}}+frac{b}{asqrt{b^2+1}}+frac{c}{bsqrt{c^2+1}}ge frac{3}{2}$$
Idea 1.From $a+b+c=abcLeftrightarrow frac{1}{ab}+frac{1}{bc}+frac{1}{ca}=1$. Let $left(frac{1}{a};frac{1}{b};frac{1}{c}right)rightarrow left(x;y;zright)$
So i need to prove $frac{z}{sqrt{1+x^2}}+frac{y}{sqrt{z^2+1}}+frac{x}{sqrt{y^2+1}}ge frac{3}{2}$
By AM-GM $frac{x}{sqrt{y^2+1}}=frac{x}{sqrt{left(x+yright)left(y+zright)}}ge frac{2x}{x+2y+z}$
$$LHSge 2sum _{cyc}frac{x}{x+2y+z}=2sum _{cyc}frac{x^2}{x^2+2xy+xz}ge 2frac{left(x+y+zright)^2}{sum _{cyc}x^2+sum _{cyc}3xy}$$
Or $4left(x+y+zright)^2ge 3left(x^2+y^2+z^2+3xy+3yz+3xzright)$
Or $x^2+y^2+z^2ge xy+yz+xz$ (true)
Idea 2. By Holder $$left(sum _{cyc}frac{a}{csqrt{a^2+1}}right)left(sum _{cyc}frac{a}{csqrt{a^2+1}}right)sum _{cyc}left(c^2left(a^2+1right)aright)ge left(sum _{cyc}aright)^3$$
I will prove the inequality $frac{left(a+b+cright)^3}{c^2aleft(a^2+1right)+a^2bleft(b^2+1right)+b^2cleft(c^2+1right)}ge frac{3}{2}$
Or $frac{abcleft(a+b+cright)^3}{left(a+b+cright)left(a^2b^3+b^2c^3+c^2a^3right)+abcleft(a^2b+b^2c+c^2aright)}ge frac{3}{2}$
I tried $SOS$ but failed help me improve "idea 2" use Holder
inequality radicals geometric-inequalities holder-inequality rearrangement-inequality
inequality radicals geometric-inequalities holder-inequality rearrangement-inequality
edited Jan 8 at 19:09
Michael Rozenberg
100k1591193
100k1591193
asked Jan 8 at 15:07
Nguyễn Duy LinhNguyễn Duy Linh
1818
1818
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We need to prove that
$$sum_{cyc}frac{a}{csqrt{a^2+frac{abc}{a+b+c}}}geqfrac{3}{2}$$ or
$$sum_{cyc}sqrt{frac{a(a+b+c)}{c^2(a+b)(a+c)}}geqfrac{3}{2}$$ or
$$sum_{cyc}sqrt{frac{a^2b}{c(a+b)(a+c)}}geqfrac{3}{2}$$ or
$$sum_{cyc }sqrt{a^3b^2(b+c)}geqfrac{3}{2}sqrt{abc(a+b)(a+c)(b+c)}$$ or
$$sum_{cyc }sqrt{(a^3b^3+a^3b^2c)}geqfrac{3}{2}sqrt{abc(a+b)(a+c)(b+c)}.$$
Now, let $ab=z$, $ac=y$ and $bc=x$.
Thus, we need to prove that
$$sum_{cyc}sqrt{z^3+z^2x}geqfrac{3}{2}sqrt{(x+y)(x+z)(y+z)}.$$
By Holder
$$left(sum_{cyc}sqrt{z^3+z^2x}right)^2sum_{cyc}frac{z}{z+x}geq(x+y+z)^3.$$
Id est, it's enough to prove that
$$4(x+y+z)^3geq9prod_{cyc}(x+y)sum_{cyc}frac{z}{z+x}$$ or
$$4(x+y+z)^3geq9sum_{cyc}x(x+z)(y+z)$$ or
$$4(x+y+z)^3geq9sum_{cyc}(2x^2y+x^2z+xyz).$$
Now, by Rearrangement easy to show that $$x^2y+y^2z+z^2x+xyzleqfrac{4}{27}(x+y+z)^3.$$
Thus, it's enough to prove that
$$4(x+y+z)^3geqfrac{4}{3}(x+y+z)^3+9sum_{cyc}left(x^2y+x^2z+frac{2}{3}xyzright)$$ or
$$frac{8}{3}(x+y+z)^3geq9(x+y)(x+z)(y+z)$$ or
$$left(frac{x+y+x+z+y+z}{3}right)^3geq(x+y)(x+z)(y+z),$$ which is true by AM-GM.
Done!
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066277%2fprove-that-fracac-sqrta21-fracba-sqrtb21-fraccb-sqrtc2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We need to prove that
$$sum_{cyc}frac{a}{csqrt{a^2+frac{abc}{a+b+c}}}geqfrac{3}{2}$$ or
$$sum_{cyc}sqrt{frac{a(a+b+c)}{c^2(a+b)(a+c)}}geqfrac{3}{2}$$ or
$$sum_{cyc}sqrt{frac{a^2b}{c(a+b)(a+c)}}geqfrac{3}{2}$$ or
$$sum_{cyc }sqrt{a^3b^2(b+c)}geqfrac{3}{2}sqrt{abc(a+b)(a+c)(b+c)}$$ or
$$sum_{cyc }sqrt{(a^3b^3+a^3b^2c)}geqfrac{3}{2}sqrt{abc(a+b)(a+c)(b+c)}.$$
Now, let $ab=z$, $ac=y$ and $bc=x$.
Thus, we need to prove that
$$sum_{cyc}sqrt{z^3+z^2x}geqfrac{3}{2}sqrt{(x+y)(x+z)(y+z)}.$$
By Holder
$$left(sum_{cyc}sqrt{z^3+z^2x}right)^2sum_{cyc}frac{z}{z+x}geq(x+y+z)^3.$$
Id est, it's enough to prove that
$$4(x+y+z)^3geq9prod_{cyc}(x+y)sum_{cyc}frac{z}{z+x}$$ or
$$4(x+y+z)^3geq9sum_{cyc}x(x+z)(y+z)$$ or
$$4(x+y+z)^3geq9sum_{cyc}(2x^2y+x^2z+xyz).$$
Now, by Rearrangement easy to show that $$x^2y+y^2z+z^2x+xyzleqfrac{4}{27}(x+y+z)^3.$$
Thus, it's enough to prove that
$$4(x+y+z)^3geqfrac{4}{3}(x+y+z)^3+9sum_{cyc}left(x^2y+x^2z+frac{2}{3}xyzright)$$ or
$$frac{8}{3}(x+y+z)^3geq9(x+y)(x+z)(y+z)$$ or
$$left(frac{x+y+x+z+y+z}{3}right)^3geq(x+y)(x+z)(y+z),$$ which is true by AM-GM.
Done!
$endgroup$
add a comment |
$begingroup$
We need to prove that
$$sum_{cyc}frac{a}{csqrt{a^2+frac{abc}{a+b+c}}}geqfrac{3}{2}$$ or
$$sum_{cyc}sqrt{frac{a(a+b+c)}{c^2(a+b)(a+c)}}geqfrac{3}{2}$$ or
$$sum_{cyc}sqrt{frac{a^2b}{c(a+b)(a+c)}}geqfrac{3}{2}$$ or
$$sum_{cyc }sqrt{a^3b^2(b+c)}geqfrac{3}{2}sqrt{abc(a+b)(a+c)(b+c)}$$ or
$$sum_{cyc }sqrt{(a^3b^3+a^3b^2c)}geqfrac{3}{2}sqrt{abc(a+b)(a+c)(b+c)}.$$
Now, let $ab=z$, $ac=y$ and $bc=x$.
Thus, we need to prove that
$$sum_{cyc}sqrt{z^3+z^2x}geqfrac{3}{2}sqrt{(x+y)(x+z)(y+z)}.$$
By Holder
$$left(sum_{cyc}sqrt{z^3+z^2x}right)^2sum_{cyc}frac{z}{z+x}geq(x+y+z)^3.$$
Id est, it's enough to prove that
$$4(x+y+z)^3geq9prod_{cyc}(x+y)sum_{cyc}frac{z}{z+x}$$ or
$$4(x+y+z)^3geq9sum_{cyc}x(x+z)(y+z)$$ or
$$4(x+y+z)^3geq9sum_{cyc}(2x^2y+x^2z+xyz).$$
Now, by Rearrangement easy to show that $$x^2y+y^2z+z^2x+xyzleqfrac{4}{27}(x+y+z)^3.$$
Thus, it's enough to prove that
$$4(x+y+z)^3geqfrac{4}{3}(x+y+z)^3+9sum_{cyc}left(x^2y+x^2z+frac{2}{3}xyzright)$$ or
$$frac{8}{3}(x+y+z)^3geq9(x+y)(x+z)(y+z)$$ or
$$left(frac{x+y+x+z+y+z}{3}right)^3geq(x+y)(x+z)(y+z),$$ which is true by AM-GM.
Done!
$endgroup$
add a comment |
$begingroup$
We need to prove that
$$sum_{cyc}frac{a}{csqrt{a^2+frac{abc}{a+b+c}}}geqfrac{3}{2}$$ or
$$sum_{cyc}sqrt{frac{a(a+b+c)}{c^2(a+b)(a+c)}}geqfrac{3}{2}$$ or
$$sum_{cyc}sqrt{frac{a^2b}{c(a+b)(a+c)}}geqfrac{3}{2}$$ or
$$sum_{cyc }sqrt{a^3b^2(b+c)}geqfrac{3}{2}sqrt{abc(a+b)(a+c)(b+c)}$$ or
$$sum_{cyc }sqrt{(a^3b^3+a^3b^2c)}geqfrac{3}{2}sqrt{abc(a+b)(a+c)(b+c)}.$$
Now, let $ab=z$, $ac=y$ and $bc=x$.
Thus, we need to prove that
$$sum_{cyc}sqrt{z^3+z^2x}geqfrac{3}{2}sqrt{(x+y)(x+z)(y+z)}.$$
By Holder
$$left(sum_{cyc}sqrt{z^3+z^2x}right)^2sum_{cyc}frac{z}{z+x}geq(x+y+z)^3.$$
Id est, it's enough to prove that
$$4(x+y+z)^3geq9prod_{cyc}(x+y)sum_{cyc}frac{z}{z+x}$$ or
$$4(x+y+z)^3geq9sum_{cyc}x(x+z)(y+z)$$ or
$$4(x+y+z)^3geq9sum_{cyc}(2x^2y+x^2z+xyz).$$
Now, by Rearrangement easy to show that $$x^2y+y^2z+z^2x+xyzleqfrac{4}{27}(x+y+z)^3.$$
Thus, it's enough to prove that
$$4(x+y+z)^3geqfrac{4}{3}(x+y+z)^3+9sum_{cyc}left(x^2y+x^2z+frac{2}{3}xyzright)$$ or
$$frac{8}{3}(x+y+z)^3geq9(x+y)(x+z)(y+z)$$ or
$$left(frac{x+y+x+z+y+z}{3}right)^3geq(x+y)(x+z)(y+z),$$ which is true by AM-GM.
Done!
$endgroup$
We need to prove that
$$sum_{cyc}frac{a}{csqrt{a^2+frac{abc}{a+b+c}}}geqfrac{3}{2}$$ or
$$sum_{cyc}sqrt{frac{a(a+b+c)}{c^2(a+b)(a+c)}}geqfrac{3}{2}$$ or
$$sum_{cyc}sqrt{frac{a^2b}{c(a+b)(a+c)}}geqfrac{3}{2}$$ or
$$sum_{cyc }sqrt{a^3b^2(b+c)}geqfrac{3}{2}sqrt{abc(a+b)(a+c)(b+c)}$$ or
$$sum_{cyc }sqrt{(a^3b^3+a^3b^2c)}geqfrac{3}{2}sqrt{abc(a+b)(a+c)(b+c)}.$$
Now, let $ab=z$, $ac=y$ and $bc=x$.
Thus, we need to prove that
$$sum_{cyc}sqrt{z^3+z^2x}geqfrac{3}{2}sqrt{(x+y)(x+z)(y+z)}.$$
By Holder
$$left(sum_{cyc}sqrt{z^3+z^2x}right)^2sum_{cyc}frac{z}{z+x}geq(x+y+z)^3.$$
Id est, it's enough to prove that
$$4(x+y+z)^3geq9prod_{cyc}(x+y)sum_{cyc}frac{z}{z+x}$$ or
$$4(x+y+z)^3geq9sum_{cyc}x(x+z)(y+z)$$ or
$$4(x+y+z)^3geq9sum_{cyc}(2x^2y+x^2z+xyz).$$
Now, by Rearrangement easy to show that $$x^2y+y^2z+z^2x+xyzleqfrac{4}{27}(x+y+z)^3.$$
Thus, it's enough to prove that
$$4(x+y+z)^3geqfrac{4}{3}(x+y+z)^3+9sum_{cyc}left(x^2y+x^2z+frac{2}{3}xyzright)$$ or
$$frac{8}{3}(x+y+z)^3geq9(x+y)(x+z)(y+z)$$ or
$$left(frac{x+y+x+z+y+z}{3}right)^3geq(x+y)(x+z)(y+z),$$ which is true by AM-GM.
Done!
edited Jan 8 at 19:06
answered Jan 8 at 19:01
Michael RozenbergMichael Rozenberg
100k1591193
100k1591193
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066277%2fprove-that-fracac-sqrta21-fracba-sqrtb21-fraccb-sqrtc2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown