Find $lambda^{d}(A_{d}(a))$ and determine its behaviour as $d to infty$












0












$begingroup$


Set $A_{d}(a):={(x_{1},...,x_{d})inmathbb [0,infty[^{d}: sum_{i=1}^{d}x_{i}leq a}$, whereby $a > 0$



Determine:



(i) $lambda^{d}(A_{d}(a))$



(ii) how $(A_{d}(1))$ behaves as $d to infty$



Is there a formula for n-dimensional squares? (At least I think it is a square).










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    This is not a sphere: draw it for $d=2$!
    $endgroup$
    – Mindlack
    Jan 8 at 16:07










  • $begingroup$
    It would be a square, correct?
    $endgroup$
    – MinaThuma
    Jan 8 at 16:25










  • $begingroup$
    No, it is not a square.
    $endgroup$
    – Mindlack
    Jan 8 at 17:12










  • $begingroup$
    Well then diamond-like
    $endgroup$
    – MinaThuma
    Jan 8 at 17:24










  • $begingroup$
    No: negative values are forbidden!
    $endgroup$
    – Mindlack
    Jan 8 at 17:27
















0












$begingroup$


Set $A_{d}(a):={(x_{1},...,x_{d})inmathbb [0,infty[^{d}: sum_{i=1}^{d}x_{i}leq a}$, whereby $a > 0$



Determine:



(i) $lambda^{d}(A_{d}(a))$



(ii) how $(A_{d}(1))$ behaves as $d to infty$



Is there a formula for n-dimensional squares? (At least I think it is a square).










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    This is not a sphere: draw it for $d=2$!
    $endgroup$
    – Mindlack
    Jan 8 at 16:07










  • $begingroup$
    It would be a square, correct?
    $endgroup$
    – MinaThuma
    Jan 8 at 16:25










  • $begingroup$
    No, it is not a square.
    $endgroup$
    – Mindlack
    Jan 8 at 17:12










  • $begingroup$
    Well then diamond-like
    $endgroup$
    – MinaThuma
    Jan 8 at 17:24










  • $begingroup$
    No: negative values are forbidden!
    $endgroup$
    – Mindlack
    Jan 8 at 17:27














0












0








0





$begingroup$


Set $A_{d}(a):={(x_{1},...,x_{d})inmathbb [0,infty[^{d}: sum_{i=1}^{d}x_{i}leq a}$, whereby $a > 0$



Determine:



(i) $lambda^{d}(A_{d}(a))$



(ii) how $(A_{d}(1))$ behaves as $d to infty$



Is there a formula for n-dimensional squares? (At least I think it is a square).










share|cite|improve this question











$endgroup$




Set $A_{d}(a):={(x_{1},...,x_{d})inmathbb [0,infty[^{d}: sum_{i=1}^{d}x_{i}leq a}$, whereby $a > 0$



Determine:



(i) $lambda^{d}(A_{d}(a))$



(ii) how $(A_{d}(1))$ behaves as $d to infty$



Is there a formula for n-dimensional squares? (At least I think it is a square).







real-analysis measure-theory lebesgue-integral volume






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 16:13







MinaThuma

















asked Jan 8 at 15:59









MinaThumaMinaThuma

798




798








  • 1




    $begingroup$
    This is not a sphere: draw it for $d=2$!
    $endgroup$
    – Mindlack
    Jan 8 at 16:07










  • $begingroup$
    It would be a square, correct?
    $endgroup$
    – MinaThuma
    Jan 8 at 16:25










  • $begingroup$
    No, it is not a square.
    $endgroup$
    – Mindlack
    Jan 8 at 17:12










  • $begingroup$
    Well then diamond-like
    $endgroup$
    – MinaThuma
    Jan 8 at 17:24










  • $begingroup$
    No: negative values are forbidden!
    $endgroup$
    – Mindlack
    Jan 8 at 17:27














  • 1




    $begingroup$
    This is not a sphere: draw it for $d=2$!
    $endgroup$
    – Mindlack
    Jan 8 at 16:07










  • $begingroup$
    It would be a square, correct?
    $endgroup$
    – MinaThuma
    Jan 8 at 16:25










  • $begingroup$
    No, it is not a square.
    $endgroup$
    – Mindlack
    Jan 8 at 17:12










  • $begingroup$
    Well then diamond-like
    $endgroup$
    – MinaThuma
    Jan 8 at 17:24










  • $begingroup$
    No: negative values are forbidden!
    $endgroup$
    – Mindlack
    Jan 8 at 17:27








1




1




$begingroup$
This is not a sphere: draw it for $d=2$!
$endgroup$
– Mindlack
Jan 8 at 16:07




$begingroup$
This is not a sphere: draw it for $d=2$!
$endgroup$
– Mindlack
Jan 8 at 16:07












$begingroup$
It would be a square, correct?
$endgroup$
– MinaThuma
Jan 8 at 16:25




$begingroup$
It would be a square, correct?
$endgroup$
– MinaThuma
Jan 8 at 16:25












$begingroup$
No, it is not a square.
$endgroup$
– Mindlack
Jan 8 at 17:12




$begingroup$
No, it is not a square.
$endgroup$
– Mindlack
Jan 8 at 17:12












$begingroup$
Well then diamond-like
$endgroup$
– MinaThuma
Jan 8 at 17:24




$begingroup$
Well then diamond-like
$endgroup$
– MinaThuma
Jan 8 at 17:24












$begingroup$
No: negative values are forbidden!
$endgroup$
– Mindlack
Jan 8 at 17:27




$begingroup$
No: negative values are forbidden!
$endgroup$
– Mindlack
Jan 8 at 17:27










1 Answer
1






active

oldest

votes


















1












$begingroup$

You can evaluate the volume as an iterated integral.



Since $x_1 + cdots + x_d le a$ a point $x = (x_1,ldots,x_d)$ belongs to the region $A_d(a)$ if and only if




  • $ 0 le x_1 le a$

  • $ 0 le x_2 le a - x_1$

  • $0 le x_3 le a - x_1 - x_2$


and so on until you get to





  • $0 le x_d le a - x_1 - cdots - x_{d-1}$.


The elementary $d$-volume of $A_d(a)$ satisfies
$$V_d(A_d(a)) = int_0^a int_0^{a - x_1} int_0^{a - x_1 - x_2} cdots int_0^{a - x_1 - cdots - x_{d-1}} , dx_d dx_{d-1} cdots dx_1.$$



You could try to work this out directly, or look for a pattern and formulate a proof by induction. It isn't hard to see that




  • $V_1(A_1(a)) = a$

  • $V_2(A_2(a)) = dfrac{a^2}{2}$

  • $V_3(A_3(a)) = dfrac{a^3}{6}$


so one might have the audacity to conjecture that $V_d(A_d(a)) = dfrac{a^d}{d!}$.



Since the cases $d=1$ through $d=3$ have been dispensed with it remains only to make the induction step. Assuming that the formula holds for $d-1$, a close look at the integral defining $V_d(A_d(a))$ shows
$$V_d(A_d(a)) = int_0^a V_{d-1}(A_{d-1}(a - x_1)) , dx_1 = int_0^a frac{(a-x_1)^{d-1}}{(d-1)!} , dx_1 = frac{a^d}{d!}.$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066346%2ffind-lambdada-da-and-determine-its-behaviour-as-d-to-infty%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    You can evaluate the volume as an iterated integral.



    Since $x_1 + cdots + x_d le a$ a point $x = (x_1,ldots,x_d)$ belongs to the region $A_d(a)$ if and only if




    • $ 0 le x_1 le a$

    • $ 0 le x_2 le a - x_1$

    • $0 le x_3 le a - x_1 - x_2$


    and so on until you get to





    • $0 le x_d le a - x_1 - cdots - x_{d-1}$.


    The elementary $d$-volume of $A_d(a)$ satisfies
    $$V_d(A_d(a)) = int_0^a int_0^{a - x_1} int_0^{a - x_1 - x_2} cdots int_0^{a - x_1 - cdots - x_{d-1}} , dx_d dx_{d-1} cdots dx_1.$$



    You could try to work this out directly, or look for a pattern and formulate a proof by induction. It isn't hard to see that




    • $V_1(A_1(a)) = a$

    • $V_2(A_2(a)) = dfrac{a^2}{2}$

    • $V_3(A_3(a)) = dfrac{a^3}{6}$


    so one might have the audacity to conjecture that $V_d(A_d(a)) = dfrac{a^d}{d!}$.



    Since the cases $d=1$ through $d=3$ have been dispensed with it remains only to make the induction step. Assuming that the formula holds for $d-1$, a close look at the integral defining $V_d(A_d(a))$ shows
    $$V_d(A_d(a)) = int_0^a V_{d-1}(A_{d-1}(a - x_1)) , dx_1 = int_0^a frac{(a-x_1)^{d-1}}{(d-1)!} , dx_1 = frac{a^d}{d!}.$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      You can evaluate the volume as an iterated integral.



      Since $x_1 + cdots + x_d le a$ a point $x = (x_1,ldots,x_d)$ belongs to the region $A_d(a)$ if and only if




      • $ 0 le x_1 le a$

      • $ 0 le x_2 le a - x_1$

      • $0 le x_3 le a - x_1 - x_2$


      and so on until you get to





      • $0 le x_d le a - x_1 - cdots - x_{d-1}$.


      The elementary $d$-volume of $A_d(a)$ satisfies
      $$V_d(A_d(a)) = int_0^a int_0^{a - x_1} int_0^{a - x_1 - x_2} cdots int_0^{a - x_1 - cdots - x_{d-1}} , dx_d dx_{d-1} cdots dx_1.$$



      You could try to work this out directly, or look for a pattern and formulate a proof by induction. It isn't hard to see that




      • $V_1(A_1(a)) = a$

      • $V_2(A_2(a)) = dfrac{a^2}{2}$

      • $V_3(A_3(a)) = dfrac{a^3}{6}$


      so one might have the audacity to conjecture that $V_d(A_d(a)) = dfrac{a^d}{d!}$.



      Since the cases $d=1$ through $d=3$ have been dispensed with it remains only to make the induction step. Assuming that the formula holds for $d-1$, a close look at the integral defining $V_d(A_d(a))$ shows
      $$V_d(A_d(a)) = int_0^a V_{d-1}(A_{d-1}(a - x_1)) , dx_1 = int_0^a frac{(a-x_1)^{d-1}}{(d-1)!} , dx_1 = frac{a^d}{d!}.$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        You can evaluate the volume as an iterated integral.



        Since $x_1 + cdots + x_d le a$ a point $x = (x_1,ldots,x_d)$ belongs to the region $A_d(a)$ if and only if




        • $ 0 le x_1 le a$

        • $ 0 le x_2 le a - x_1$

        • $0 le x_3 le a - x_1 - x_2$


        and so on until you get to





        • $0 le x_d le a - x_1 - cdots - x_{d-1}$.


        The elementary $d$-volume of $A_d(a)$ satisfies
        $$V_d(A_d(a)) = int_0^a int_0^{a - x_1} int_0^{a - x_1 - x_2} cdots int_0^{a - x_1 - cdots - x_{d-1}} , dx_d dx_{d-1} cdots dx_1.$$



        You could try to work this out directly, or look for a pattern and formulate a proof by induction. It isn't hard to see that




        • $V_1(A_1(a)) = a$

        • $V_2(A_2(a)) = dfrac{a^2}{2}$

        • $V_3(A_3(a)) = dfrac{a^3}{6}$


        so one might have the audacity to conjecture that $V_d(A_d(a)) = dfrac{a^d}{d!}$.



        Since the cases $d=1$ through $d=3$ have been dispensed with it remains only to make the induction step. Assuming that the formula holds for $d-1$, a close look at the integral defining $V_d(A_d(a))$ shows
        $$V_d(A_d(a)) = int_0^a V_{d-1}(A_{d-1}(a - x_1)) , dx_1 = int_0^a frac{(a-x_1)^{d-1}}{(d-1)!} , dx_1 = frac{a^d}{d!}.$$






        share|cite|improve this answer









        $endgroup$



        You can evaluate the volume as an iterated integral.



        Since $x_1 + cdots + x_d le a$ a point $x = (x_1,ldots,x_d)$ belongs to the region $A_d(a)$ if and only if




        • $ 0 le x_1 le a$

        • $ 0 le x_2 le a - x_1$

        • $0 le x_3 le a - x_1 - x_2$


        and so on until you get to





        • $0 le x_d le a - x_1 - cdots - x_{d-1}$.


        The elementary $d$-volume of $A_d(a)$ satisfies
        $$V_d(A_d(a)) = int_0^a int_0^{a - x_1} int_0^{a - x_1 - x_2} cdots int_0^{a - x_1 - cdots - x_{d-1}} , dx_d dx_{d-1} cdots dx_1.$$



        You could try to work this out directly, or look for a pattern and formulate a proof by induction. It isn't hard to see that




        • $V_1(A_1(a)) = a$

        • $V_2(A_2(a)) = dfrac{a^2}{2}$

        • $V_3(A_3(a)) = dfrac{a^3}{6}$


        so one might have the audacity to conjecture that $V_d(A_d(a)) = dfrac{a^d}{d!}$.



        Since the cases $d=1$ through $d=3$ have been dispensed with it remains only to make the induction step. Assuming that the formula holds for $d-1$, a close look at the integral defining $V_d(A_d(a))$ shows
        $$V_d(A_d(a)) = int_0^a V_{d-1}(A_{d-1}(a - x_1)) , dx_1 = int_0^a frac{(a-x_1)^{d-1}}{(d-1)!} , dx_1 = frac{a^d}{d!}.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 8 at 21:25









        Umberto P.Umberto P.

        39k13064




        39k13064






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066346%2ffind-lambdada-da-and-determine-its-behaviour-as-d-to-infty%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$