Determining values of multilinear forms/ differential forms












0












$begingroup$


I started getting into the topic of multilinear forms and differential forms.
I find it quite hard to get into.



if I solve $$ Phi ( begin{pmatrix} 1 \ 2\3 end{pmatrix} , begin{pmatrix} 4 \5\6 end{pmatrix}) $$
$n=3 , Phi= triangle_{(1,2)}-2 triangle_{(1,3)}+ 3 triangle_{(2,3)} $



Is this way right?:



$$ begin{vmatrix} 1 & 4\ 2& 5 end{vmatrix} - 2 begin{vmatrix} 1 & 4\ 3 & 6 end{vmatrix} +3 begin{vmatrix} 2 & 5\ 3 & 6 end{vmatrix}= -3+12-9=0$$



I am not sure how to deal with :



$$ ( df )( pi , 0, frac12 ) (begin{pmatrix} -1 \ frac{1}{ pi} \ sqrt{3} end{pmatrix} )$$



where $n=3 $ and



$ f(x,y,z)= sin x+e^y arccos z $



any ideas?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    what is it $triangle$?
    $endgroup$
    – janmarqz
    Jan 8 at 18:50






  • 1




    $begingroup$
    i have edited my question
    $endgroup$
    – constant94
    Jan 8 at 21:48










  • $begingroup$
    take the gradient of $f$ for $df$, evaluate at $(pi,0,1/2)$ and matrix-multiply with the given column.
    $endgroup$
    – janmarqz
    Jan 9 at 22:09










  • $begingroup$
    You may find my lectures somewhat helpful. See, in particular, the last half of MATH 3510.
    $endgroup$
    – Ted Shifrin
    Jan 9 at 22:18
















0












$begingroup$


I started getting into the topic of multilinear forms and differential forms.
I find it quite hard to get into.



if I solve $$ Phi ( begin{pmatrix} 1 \ 2\3 end{pmatrix} , begin{pmatrix} 4 \5\6 end{pmatrix}) $$
$n=3 , Phi= triangle_{(1,2)}-2 triangle_{(1,3)}+ 3 triangle_{(2,3)} $



Is this way right?:



$$ begin{vmatrix} 1 & 4\ 2& 5 end{vmatrix} - 2 begin{vmatrix} 1 & 4\ 3 & 6 end{vmatrix} +3 begin{vmatrix} 2 & 5\ 3 & 6 end{vmatrix}= -3+12-9=0$$



I am not sure how to deal with :



$$ ( df )( pi , 0, frac12 ) (begin{pmatrix} -1 \ frac{1}{ pi} \ sqrt{3} end{pmatrix} )$$



where $n=3 $ and



$ f(x,y,z)= sin x+e^y arccos z $



any ideas?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    what is it $triangle$?
    $endgroup$
    – janmarqz
    Jan 8 at 18:50






  • 1




    $begingroup$
    i have edited my question
    $endgroup$
    – constant94
    Jan 8 at 21:48










  • $begingroup$
    take the gradient of $f$ for $df$, evaluate at $(pi,0,1/2)$ and matrix-multiply with the given column.
    $endgroup$
    – janmarqz
    Jan 9 at 22:09










  • $begingroup$
    You may find my lectures somewhat helpful. See, in particular, the last half of MATH 3510.
    $endgroup$
    – Ted Shifrin
    Jan 9 at 22:18














0












0








0


2



$begingroup$


I started getting into the topic of multilinear forms and differential forms.
I find it quite hard to get into.



if I solve $$ Phi ( begin{pmatrix} 1 \ 2\3 end{pmatrix} , begin{pmatrix} 4 \5\6 end{pmatrix}) $$
$n=3 , Phi= triangle_{(1,2)}-2 triangle_{(1,3)}+ 3 triangle_{(2,3)} $



Is this way right?:



$$ begin{vmatrix} 1 & 4\ 2& 5 end{vmatrix} - 2 begin{vmatrix} 1 & 4\ 3 & 6 end{vmatrix} +3 begin{vmatrix} 2 & 5\ 3 & 6 end{vmatrix}= -3+12-9=0$$



I am not sure how to deal with :



$$ ( df )( pi , 0, frac12 ) (begin{pmatrix} -1 \ frac{1}{ pi} \ sqrt{3} end{pmatrix} )$$



where $n=3 $ and



$ f(x,y,z)= sin x+e^y arccos z $



any ideas?










share|cite|improve this question











$endgroup$




I started getting into the topic of multilinear forms and differential forms.
I find it quite hard to get into.



if I solve $$ Phi ( begin{pmatrix} 1 \ 2\3 end{pmatrix} , begin{pmatrix} 4 \5\6 end{pmatrix}) $$
$n=3 , Phi= triangle_{(1,2)}-2 triangle_{(1,3)}+ 3 triangle_{(2,3)} $



Is this way right?:



$$ begin{vmatrix} 1 & 4\ 2& 5 end{vmatrix} - 2 begin{vmatrix} 1 & 4\ 3 & 6 end{vmatrix} +3 begin{vmatrix} 2 & 5\ 3 & 6 end{vmatrix}= -3+12-9=0$$



I am not sure how to deal with :



$$ ( df )( pi , 0, frac12 ) (begin{pmatrix} -1 \ frac{1}{ pi} \ sqrt{3} end{pmatrix} )$$



where $n=3 $ and



$ f(x,y,z)= sin x+e^y arccos z $



any ideas?







real-analysis multilinear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 9 at 22:10









janmarqz

6,21241630




6,21241630










asked Jan 8 at 15:11









constant94constant94

6310




6310








  • 2




    $begingroup$
    what is it $triangle$?
    $endgroup$
    – janmarqz
    Jan 8 at 18:50






  • 1




    $begingroup$
    i have edited my question
    $endgroup$
    – constant94
    Jan 8 at 21:48










  • $begingroup$
    take the gradient of $f$ for $df$, evaluate at $(pi,0,1/2)$ and matrix-multiply with the given column.
    $endgroup$
    – janmarqz
    Jan 9 at 22:09










  • $begingroup$
    You may find my lectures somewhat helpful. See, in particular, the last half of MATH 3510.
    $endgroup$
    – Ted Shifrin
    Jan 9 at 22:18














  • 2




    $begingroup$
    what is it $triangle$?
    $endgroup$
    – janmarqz
    Jan 8 at 18:50






  • 1




    $begingroup$
    i have edited my question
    $endgroup$
    – constant94
    Jan 8 at 21:48










  • $begingroup$
    take the gradient of $f$ for $df$, evaluate at $(pi,0,1/2)$ and matrix-multiply with the given column.
    $endgroup$
    – janmarqz
    Jan 9 at 22:09










  • $begingroup$
    You may find my lectures somewhat helpful. See, in particular, the last half of MATH 3510.
    $endgroup$
    – Ted Shifrin
    Jan 9 at 22:18








2




2




$begingroup$
what is it $triangle$?
$endgroup$
– janmarqz
Jan 8 at 18:50




$begingroup$
what is it $triangle$?
$endgroup$
– janmarqz
Jan 8 at 18:50




1




1




$begingroup$
i have edited my question
$endgroup$
– constant94
Jan 8 at 21:48




$begingroup$
i have edited my question
$endgroup$
– constant94
Jan 8 at 21:48












$begingroup$
take the gradient of $f$ for $df$, evaluate at $(pi,0,1/2)$ and matrix-multiply with the given column.
$endgroup$
– janmarqz
Jan 9 at 22:09




$begingroup$
take the gradient of $f$ for $df$, evaluate at $(pi,0,1/2)$ and matrix-multiply with the given column.
$endgroup$
– janmarqz
Jan 9 at 22:09












$begingroup$
You may find my lectures somewhat helpful. See, in particular, the last half of MATH 3510.
$endgroup$
– Ted Shifrin
Jan 9 at 22:18




$begingroup$
You may find my lectures somewhat helpful. See, in particular, the last half of MATH 3510.
$endgroup$
– Ted Shifrin
Jan 9 at 22:18










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066283%2fdetermining-values-of-multilinear-forms-differential-forms%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066283%2fdetermining-values-of-multilinear-forms-differential-forms%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]