Continuity, differentiability of $f(x,y)=frac{x^{frac{3}{2}}y^b}{x^2+y^2}$ , $x^2+y^2ne 0 $
$begingroup$
$$f(x,y)=begin{cases}frac{x^{frac{3}{2}}y^b}{x^2+y^2}&,text{ when }x^2+y^2ne 0 \ 0&,text{ when }x^2+y^2=0end{cases}$$
Discuss $f$ ’s continuity, differentiability, partial derivative’s continuity.
My attempt:
Let $y=kx$ ,and $xrightarrow 0$
Then $f=(1+k^2)^{-1}x^{-frac{1}{2}+b}k^b$ then I guess I should be $>frac{1}{2}$ and $<$ and $=$
But I don’t know how to proof the continuity ,and differentiability ,and partial derivative’s continuity on the three situation
real-analysis limits multivariable-calculus derivatives continuity
$endgroup$
add a comment |
$begingroup$
$$f(x,y)=begin{cases}frac{x^{frac{3}{2}}y^b}{x^2+y^2}&,text{ when }x^2+y^2ne 0 \ 0&,text{ when }x^2+y^2=0end{cases}$$
Discuss $f$ ’s continuity, differentiability, partial derivative’s continuity.
My attempt:
Let $y=kx$ ,and $xrightarrow 0$
Then $f=(1+k^2)^{-1}x^{-frac{1}{2}+b}k^b$ then I guess I should be $>frac{1}{2}$ and $<$ and $=$
But I don’t know how to proof the continuity ,and differentiability ,and partial derivative’s continuity on the three situation
real-analysis limits multivariable-calculus derivatives continuity
$endgroup$
$begingroup$
"Then I guess I should be > 1/2" is meaningless. Are we to presume f is a real value function?
$endgroup$
– William Elliot
Jan 8 at 11:25
$begingroup$
@WilliamElliot yes we assume f is real function
$endgroup$
– jackson
Jan 8 at 11:27
$begingroup$
Then you should restrict the domain of f to nonnegative numbers.
$endgroup$
– William Elliot
Jan 8 at 21:14
add a comment |
$begingroup$
$$f(x,y)=begin{cases}frac{x^{frac{3}{2}}y^b}{x^2+y^2}&,text{ when }x^2+y^2ne 0 \ 0&,text{ when }x^2+y^2=0end{cases}$$
Discuss $f$ ’s continuity, differentiability, partial derivative’s continuity.
My attempt:
Let $y=kx$ ,and $xrightarrow 0$
Then $f=(1+k^2)^{-1}x^{-frac{1}{2}+b}k^b$ then I guess I should be $>frac{1}{2}$ and $<$ and $=$
But I don’t know how to proof the continuity ,and differentiability ,and partial derivative’s continuity on the three situation
real-analysis limits multivariable-calculus derivatives continuity
$endgroup$
$$f(x,y)=begin{cases}frac{x^{frac{3}{2}}y^b}{x^2+y^2}&,text{ when }x^2+y^2ne 0 \ 0&,text{ when }x^2+y^2=0end{cases}$$
Discuss $f$ ’s continuity, differentiability, partial derivative’s continuity.
My attempt:
Let $y=kx$ ,and $xrightarrow 0$
Then $f=(1+k^2)^{-1}x^{-frac{1}{2}+b}k^b$ then I guess I should be $>frac{1}{2}$ and $<$ and $=$
But I don’t know how to proof the continuity ,and differentiability ,and partial derivative’s continuity on the three situation
real-analysis limits multivariable-calculus derivatives continuity
real-analysis limits multivariable-calculus derivatives continuity
edited Jan 8 at 11:18


StubbornAtom
5,75611138
5,75611138
asked Jan 8 at 10:58
jacksonjackson
829
829
$begingroup$
"Then I guess I should be > 1/2" is meaningless. Are we to presume f is a real value function?
$endgroup$
– William Elliot
Jan 8 at 11:25
$begingroup$
@WilliamElliot yes we assume f is real function
$endgroup$
– jackson
Jan 8 at 11:27
$begingroup$
Then you should restrict the domain of f to nonnegative numbers.
$endgroup$
– William Elliot
Jan 8 at 21:14
add a comment |
$begingroup$
"Then I guess I should be > 1/2" is meaningless. Are we to presume f is a real value function?
$endgroup$
– William Elliot
Jan 8 at 11:25
$begingroup$
@WilliamElliot yes we assume f is real function
$endgroup$
– jackson
Jan 8 at 11:27
$begingroup$
Then you should restrict the domain of f to nonnegative numbers.
$endgroup$
– William Elliot
Jan 8 at 21:14
$begingroup$
"Then I guess I should be > 1/2" is meaningless. Are we to presume f is a real value function?
$endgroup$
– William Elliot
Jan 8 at 11:25
$begingroup$
"Then I guess I should be > 1/2" is meaningless. Are we to presume f is a real value function?
$endgroup$
– William Elliot
Jan 8 at 11:25
$begingroup$
@WilliamElliot yes we assume f is real function
$endgroup$
– jackson
Jan 8 at 11:27
$begingroup$
@WilliamElliot yes we assume f is real function
$endgroup$
– jackson
Jan 8 at 11:27
$begingroup$
Then you should restrict the domain of f to nonnegative numbers.
$endgroup$
– William Elliot
Jan 8 at 21:14
$begingroup$
Then you should restrict the domain of f to nonnegative numbers.
$endgroup$
– William Elliot
Jan 8 at 21:14
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: Use that $$frac{1}{x^2+y^2}le frac{1}{2|xy|}$$
$endgroup$
$begingroup$
So when b$ge 1 is continuity ,but when b<1 what should I do
$endgroup$
– jackson
Jan 8 at 11:32
$begingroup$
In this case we have no continuity
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:36
$begingroup$
how I proof it I
$endgroup$
– jackson
Jan 8 at 11:42
$begingroup$
In this case $$|f(x,y)|$$ tends not to zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:57
$begingroup$
but how I proof it I still don’t figure it out ,can you write explicit to me thanks very much
$endgroup$
– jackson
Jan 8 at 13:02
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066030%2fcontinuity-differentiability-of-fx-y-fracx-frac32ybx2y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Use that $$frac{1}{x^2+y^2}le frac{1}{2|xy|}$$
$endgroup$
$begingroup$
So when b$ge 1 is continuity ,but when b<1 what should I do
$endgroup$
– jackson
Jan 8 at 11:32
$begingroup$
In this case we have no continuity
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:36
$begingroup$
how I proof it I
$endgroup$
– jackson
Jan 8 at 11:42
$begingroup$
In this case $$|f(x,y)|$$ tends not to zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:57
$begingroup$
but how I proof it I still don’t figure it out ,can you write explicit to me thanks very much
$endgroup$
– jackson
Jan 8 at 13:02
add a comment |
$begingroup$
Hint: Use that $$frac{1}{x^2+y^2}le frac{1}{2|xy|}$$
$endgroup$
$begingroup$
So when b$ge 1 is continuity ,but when b<1 what should I do
$endgroup$
– jackson
Jan 8 at 11:32
$begingroup$
In this case we have no continuity
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:36
$begingroup$
how I proof it I
$endgroup$
– jackson
Jan 8 at 11:42
$begingroup$
In this case $$|f(x,y)|$$ tends not to zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:57
$begingroup$
but how I proof it I still don’t figure it out ,can you write explicit to me thanks very much
$endgroup$
– jackson
Jan 8 at 13:02
add a comment |
$begingroup$
Hint: Use that $$frac{1}{x^2+y^2}le frac{1}{2|xy|}$$
$endgroup$
Hint: Use that $$frac{1}{x^2+y^2}le frac{1}{2|xy|}$$
answered Jan 8 at 11:24


Dr. Sonnhard GraubnerDr. Sonnhard Graubner
74.6k42865
74.6k42865
$begingroup$
So when b$ge 1 is continuity ,but when b<1 what should I do
$endgroup$
– jackson
Jan 8 at 11:32
$begingroup$
In this case we have no continuity
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:36
$begingroup$
how I proof it I
$endgroup$
– jackson
Jan 8 at 11:42
$begingroup$
In this case $$|f(x,y)|$$ tends not to zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:57
$begingroup$
but how I proof it I still don’t figure it out ,can you write explicit to me thanks very much
$endgroup$
– jackson
Jan 8 at 13:02
add a comment |
$begingroup$
So when b$ge 1 is continuity ,but when b<1 what should I do
$endgroup$
– jackson
Jan 8 at 11:32
$begingroup$
In this case we have no continuity
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:36
$begingroup$
how I proof it I
$endgroup$
– jackson
Jan 8 at 11:42
$begingroup$
In this case $$|f(x,y)|$$ tends not to zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:57
$begingroup$
but how I proof it I still don’t figure it out ,can you write explicit to me thanks very much
$endgroup$
– jackson
Jan 8 at 13:02
$begingroup$
So when b$ge 1 is continuity ,but when b<1 what should I do
$endgroup$
– jackson
Jan 8 at 11:32
$begingroup$
So when b$ge 1 is continuity ,but when b<1 what should I do
$endgroup$
– jackson
Jan 8 at 11:32
$begingroup$
In this case we have no continuity
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:36
$begingroup$
In this case we have no continuity
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:36
$begingroup$
how I proof it I
$endgroup$
– jackson
Jan 8 at 11:42
$begingroup$
how I proof it I
$endgroup$
– jackson
Jan 8 at 11:42
$begingroup$
In this case $$|f(x,y)|$$ tends not to zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:57
$begingroup$
In this case $$|f(x,y)|$$ tends not to zero
$endgroup$
– Dr. Sonnhard Graubner
Jan 8 at 11:57
$begingroup$
but how I proof it I still don’t figure it out ,can you write explicit to me thanks very much
$endgroup$
– jackson
Jan 8 at 13:02
$begingroup$
but how I proof it I still don’t figure it out ,can you write explicit to me thanks very much
$endgroup$
– jackson
Jan 8 at 13:02
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066030%2fcontinuity-differentiability-of-fx-y-fracx-frac32ybx2y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
"Then I guess I should be > 1/2" is meaningless. Are we to presume f is a real value function?
$endgroup$
– William Elliot
Jan 8 at 11:25
$begingroup$
@WilliamElliot yes we assume f is real function
$endgroup$
– jackson
Jan 8 at 11:27
$begingroup$
Then you should restrict the domain of f to nonnegative numbers.
$endgroup$
– William Elliot
Jan 8 at 21:14