Determinant of matrix of submatrices












1












$begingroup$


Can you check my solution to:



Task



Having two matrices $X,Yinmathbb{R}^{n,n}$ where $x,yinmathbb{R}$ and matrices are defined as



$
X=begin{bmatrix}
x & 0 &0 & dots & 0 \
x & x & 0& dots & 0\
x & x & x& dots & 0\
vdots&vdots&vdots&vdots&vdots \
x & x & x & dots & x \
end{bmatrix}
$
and $
Y=begin{bmatrix}
0 & dots & 0 &0 & y \
0 & dots & 0 & y & 0\
0 & dots & y & 0& 0\
vdots&vdots&vdots&vdots&vdots \
y & dots & 0 & 0 & 0 \
end{bmatrix}
$



find the $det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}
$
.



Solution:



We can observe that for matrices $A,B,C,Dinmathbb{R}^{n,n}$ when matrix $A$ is invertible then



$begin{bmatrix}
A & B \
C & D \
end{bmatrix}=begin{bmatrix}
A & 0 \
C & I_{n} \
end{bmatrix}cdotbegin{bmatrix}
I_n & A^{-1}B \
0 & D-CA^{-1}B \
end{bmatrix}
$



so



$det_{2n}begin{bmatrix}
A & B \
C & D \
end{bmatrix}=det_{n}(A) cdotdet_{n}(D-CA^{-1}B)$



We see that $xI_n$ is invertible matrix when $xneq 0$ and then we state that



$det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=det_{n}(xI_n) cdotdet_{n}(X+Y(xI_n)^{-1}Y)
$



and now let's observe that $det_{n}(xI_n)=x^n$ and



$
X+Y(xI_n)^{-1}Y=X+frac{1}{x}YI_n^{-1}Y=X+frac{1}{x}YI_{n}Y
=X+frac{1}{x}Y^2=X+frac{y^2}{x}I_n
$



so $det_n (X+Y(xI_n)^{-1}Y)=det_{n}left(X+frac{y^2}{x}I_nright) = (x+frac{y^2}{x})^n$



and in the end we can write that $det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=x^n (x+frac{y^2}{x})^n = (x^2+y^2)^n
$
when $xneq 0$.



In the case $x=0$ we see that
$det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=det_{2n}begin{bmatrix}
0 & Y \
-Y & 0 \
end{bmatrix} =(-1)^n det_{2n}begin{bmatrix}
Y & 0 \
0 & -Y \
end{bmatrix} =(-1)^n cdot y^n cdot (-y)^n = (-1)^ncdot (-1)^n cdot y^{2n} = y^{2n}$



Can you maybe find any simpler solution to this task?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Can you check my solution to:



    Task



    Having two matrices $X,Yinmathbb{R}^{n,n}$ where $x,yinmathbb{R}$ and matrices are defined as



    $
    X=begin{bmatrix}
    x & 0 &0 & dots & 0 \
    x & x & 0& dots & 0\
    x & x & x& dots & 0\
    vdots&vdots&vdots&vdots&vdots \
    x & x & x & dots & x \
    end{bmatrix}
    $
    and $
    Y=begin{bmatrix}
    0 & dots & 0 &0 & y \
    0 & dots & 0 & y & 0\
    0 & dots & y & 0& 0\
    vdots&vdots&vdots&vdots&vdots \
    y & dots & 0 & 0 & 0 \
    end{bmatrix}
    $



    find the $det_{2n}begin{bmatrix}
    xI_n & Y \
    -Y & X \
    end{bmatrix}
    $
    .



    Solution:



    We can observe that for matrices $A,B,C,Dinmathbb{R}^{n,n}$ when matrix $A$ is invertible then



    $begin{bmatrix}
    A & B \
    C & D \
    end{bmatrix}=begin{bmatrix}
    A & 0 \
    C & I_{n} \
    end{bmatrix}cdotbegin{bmatrix}
    I_n & A^{-1}B \
    0 & D-CA^{-1}B \
    end{bmatrix}
    $



    so



    $det_{2n}begin{bmatrix}
    A & B \
    C & D \
    end{bmatrix}=det_{n}(A) cdotdet_{n}(D-CA^{-1}B)$



    We see that $xI_n$ is invertible matrix when $xneq 0$ and then we state that



    $det_{2n}begin{bmatrix}
    xI_n & Y \
    -Y & X \
    end{bmatrix}=det_{n}(xI_n) cdotdet_{n}(X+Y(xI_n)^{-1}Y)
    $



    and now let's observe that $det_{n}(xI_n)=x^n$ and



    $
    X+Y(xI_n)^{-1}Y=X+frac{1}{x}YI_n^{-1}Y=X+frac{1}{x}YI_{n}Y
    =X+frac{1}{x}Y^2=X+frac{y^2}{x}I_n
    $



    so $det_n (X+Y(xI_n)^{-1}Y)=det_{n}left(X+frac{y^2}{x}I_nright) = (x+frac{y^2}{x})^n$



    and in the end we can write that $det_{2n}begin{bmatrix}
    xI_n & Y \
    -Y & X \
    end{bmatrix}=x^n (x+frac{y^2}{x})^n = (x^2+y^2)^n
    $
    when $xneq 0$.



    In the case $x=0$ we see that
    $det_{2n}begin{bmatrix}
    xI_n & Y \
    -Y & X \
    end{bmatrix}=det_{2n}begin{bmatrix}
    0 & Y \
    -Y & 0 \
    end{bmatrix} =(-1)^n det_{2n}begin{bmatrix}
    Y & 0 \
    0 & -Y \
    end{bmatrix} =(-1)^n cdot y^n cdot (-y)^n = (-1)^ncdot (-1)^n cdot y^{2n} = y^{2n}$



    Can you maybe find any simpler solution to this task?










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      0



      $begingroup$


      Can you check my solution to:



      Task



      Having two matrices $X,Yinmathbb{R}^{n,n}$ where $x,yinmathbb{R}$ and matrices are defined as



      $
      X=begin{bmatrix}
      x & 0 &0 & dots & 0 \
      x & x & 0& dots & 0\
      x & x & x& dots & 0\
      vdots&vdots&vdots&vdots&vdots \
      x & x & x & dots & x \
      end{bmatrix}
      $
      and $
      Y=begin{bmatrix}
      0 & dots & 0 &0 & y \
      0 & dots & 0 & y & 0\
      0 & dots & y & 0& 0\
      vdots&vdots&vdots&vdots&vdots \
      y & dots & 0 & 0 & 0 \
      end{bmatrix}
      $



      find the $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}
      $
      .



      Solution:



      We can observe that for matrices $A,B,C,Dinmathbb{R}^{n,n}$ when matrix $A$ is invertible then



      $begin{bmatrix}
      A & B \
      C & D \
      end{bmatrix}=begin{bmatrix}
      A & 0 \
      C & I_{n} \
      end{bmatrix}cdotbegin{bmatrix}
      I_n & A^{-1}B \
      0 & D-CA^{-1}B \
      end{bmatrix}
      $



      so



      $det_{2n}begin{bmatrix}
      A & B \
      C & D \
      end{bmatrix}=det_{n}(A) cdotdet_{n}(D-CA^{-1}B)$



      We see that $xI_n$ is invertible matrix when $xneq 0$ and then we state that



      $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}=det_{n}(xI_n) cdotdet_{n}(X+Y(xI_n)^{-1}Y)
      $



      and now let's observe that $det_{n}(xI_n)=x^n$ and



      $
      X+Y(xI_n)^{-1}Y=X+frac{1}{x}YI_n^{-1}Y=X+frac{1}{x}YI_{n}Y
      =X+frac{1}{x}Y^2=X+frac{y^2}{x}I_n
      $



      so $det_n (X+Y(xI_n)^{-1}Y)=det_{n}left(X+frac{y^2}{x}I_nright) = (x+frac{y^2}{x})^n$



      and in the end we can write that $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}=x^n (x+frac{y^2}{x})^n = (x^2+y^2)^n
      $
      when $xneq 0$.



      In the case $x=0$ we see that
      $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}=det_{2n}begin{bmatrix}
      0 & Y \
      -Y & 0 \
      end{bmatrix} =(-1)^n det_{2n}begin{bmatrix}
      Y & 0 \
      0 & -Y \
      end{bmatrix} =(-1)^n cdot y^n cdot (-y)^n = (-1)^ncdot (-1)^n cdot y^{2n} = y^{2n}$



      Can you maybe find any simpler solution to this task?










      share|cite|improve this question











      $endgroup$




      Can you check my solution to:



      Task



      Having two matrices $X,Yinmathbb{R}^{n,n}$ where $x,yinmathbb{R}$ and matrices are defined as



      $
      X=begin{bmatrix}
      x & 0 &0 & dots & 0 \
      x & x & 0& dots & 0\
      x & x & x& dots & 0\
      vdots&vdots&vdots&vdots&vdots \
      x & x & x & dots & x \
      end{bmatrix}
      $
      and $
      Y=begin{bmatrix}
      0 & dots & 0 &0 & y \
      0 & dots & 0 & y & 0\
      0 & dots & y & 0& 0\
      vdots&vdots&vdots&vdots&vdots \
      y & dots & 0 & 0 & 0 \
      end{bmatrix}
      $



      find the $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}
      $
      .



      Solution:



      We can observe that for matrices $A,B,C,Dinmathbb{R}^{n,n}$ when matrix $A$ is invertible then



      $begin{bmatrix}
      A & B \
      C & D \
      end{bmatrix}=begin{bmatrix}
      A & 0 \
      C & I_{n} \
      end{bmatrix}cdotbegin{bmatrix}
      I_n & A^{-1}B \
      0 & D-CA^{-1}B \
      end{bmatrix}
      $



      so



      $det_{2n}begin{bmatrix}
      A & B \
      C & D \
      end{bmatrix}=det_{n}(A) cdotdet_{n}(D-CA^{-1}B)$



      We see that $xI_n$ is invertible matrix when $xneq 0$ and then we state that



      $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}=det_{n}(xI_n) cdotdet_{n}(X+Y(xI_n)^{-1}Y)
      $



      and now let's observe that $det_{n}(xI_n)=x^n$ and



      $
      X+Y(xI_n)^{-1}Y=X+frac{1}{x}YI_n^{-1}Y=X+frac{1}{x}YI_{n}Y
      =X+frac{1}{x}Y^2=X+frac{y^2}{x}I_n
      $



      so $det_n (X+Y(xI_n)^{-1}Y)=det_{n}left(X+frac{y^2}{x}I_nright) = (x+frac{y^2}{x})^n$



      and in the end we can write that $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}=x^n (x+frac{y^2}{x})^n = (x^2+y^2)^n
      $
      when $xneq 0$.



      In the case $x=0$ we see that
      $det_{2n}begin{bmatrix}
      xI_n & Y \
      -Y & X \
      end{bmatrix}=det_{2n}begin{bmatrix}
      0 & Y \
      -Y & 0 \
      end{bmatrix} =(-1)^n det_{2n}begin{bmatrix}
      Y & 0 \
      0 & -Y \
      end{bmatrix} =(-1)^n cdot y^n cdot (-y)^n = (-1)^ncdot (-1)^n cdot y^{2n} = y^{2n}$



      Can you maybe find any simpler solution to this task?







      matrices determinant block-matrices






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 5 at 21:11









      Davide Giraudo

      126k16150261




      126k16150261










      asked Jan 5 at 19:37









      avan1235avan1235

      3156




      3156






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063114%2fdeterminant-of-matrix-of-submatrices%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.






            share|cite|improve this answer









            $endgroup$


















              3












              $begingroup$

              Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.






              share|cite|improve this answer









              $endgroup$
















                3












                3








                3





                $begingroup$

                Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.






                share|cite|improve this answer









                $endgroup$



                Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 5 at 19:47









                user1551user1551

                72.4k566127




                72.4k566127






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063114%2fdeterminant-of-matrix-of-submatrices%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    Npm cannot find a required file even through it is in the searched directory