Determinant of matrix of submatrices
$begingroup$
Can you check my solution to:
Task
Having two matrices $X,Yinmathbb{R}^{n,n}$ where $x,yinmathbb{R}$ and matrices are defined as
$
X=begin{bmatrix}
x & 0 &0 & dots & 0 \
x & x & 0& dots & 0\
x & x & x& dots & 0\
vdots&vdots&vdots&vdots&vdots \
x & x & x & dots & x \
end{bmatrix}
$ and $
Y=begin{bmatrix}
0 & dots & 0 &0 & y \
0 & dots & 0 & y & 0\
0 & dots & y & 0& 0\
vdots&vdots&vdots&vdots&vdots \
y & dots & 0 & 0 & 0 \
end{bmatrix}
$
find the $det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}
$.
Solution:
We can observe that for matrices $A,B,C,Dinmathbb{R}^{n,n}$ when matrix $A$ is invertible then
$begin{bmatrix}
A & B \
C & D \
end{bmatrix}=begin{bmatrix}
A & 0 \
C & I_{n} \
end{bmatrix}cdotbegin{bmatrix}
I_n & A^{-1}B \
0 & D-CA^{-1}B \
end{bmatrix}
$
so
$det_{2n}begin{bmatrix}
A & B \
C & D \
end{bmatrix}=det_{n}(A) cdotdet_{n}(D-CA^{-1}B)$
We see that $xI_n$ is invertible matrix when $xneq 0$ and then we state that
$det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=det_{n}(xI_n) cdotdet_{n}(X+Y(xI_n)^{-1}Y)
$
and now let's observe that $det_{n}(xI_n)=x^n$ and
$
X+Y(xI_n)^{-1}Y=X+frac{1}{x}YI_n^{-1}Y=X+frac{1}{x}YI_{n}Y
=X+frac{1}{x}Y^2=X+frac{y^2}{x}I_n
$
so $det_n (X+Y(xI_n)^{-1}Y)=det_{n}left(X+frac{y^2}{x}I_nright) = (x+frac{y^2}{x})^n$
and in the end we can write that $det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=x^n (x+frac{y^2}{x})^n = (x^2+y^2)^n
$ when $xneq 0$.
In the case $x=0$ we see that
$det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=det_{2n}begin{bmatrix}
0 & Y \
-Y & 0 \
end{bmatrix} =(-1)^n det_{2n}begin{bmatrix}
Y & 0 \
0 & -Y \
end{bmatrix} =(-1)^n cdot y^n cdot (-y)^n = (-1)^ncdot (-1)^n cdot y^{2n} = y^{2n}$
Can you maybe find any simpler solution to this task?
matrices determinant block-matrices
$endgroup$
add a comment |
$begingroup$
Can you check my solution to:
Task
Having two matrices $X,Yinmathbb{R}^{n,n}$ where $x,yinmathbb{R}$ and matrices are defined as
$
X=begin{bmatrix}
x & 0 &0 & dots & 0 \
x & x & 0& dots & 0\
x & x & x& dots & 0\
vdots&vdots&vdots&vdots&vdots \
x & x & x & dots & x \
end{bmatrix}
$ and $
Y=begin{bmatrix}
0 & dots & 0 &0 & y \
0 & dots & 0 & y & 0\
0 & dots & y & 0& 0\
vdots&vdots&vdots&vdots&vdots \
y & dots & 0 & 0 & 0 \
end{bmatrix}
$
find the $det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}
$.
Solution:
We can observe that for matrices $A,B,C,Dinmathbb{R}^{n,n}$ when matrix $A$ is invertible then
$begin{bmatrix}
A & B \
C & D \
end{bmatrix}=begin{bmatrix}
A & 0 \
C & I_{n} \
end{bmatrix}cdotbegin{bmatrix}
I_n & A^{-1}B \
0 & D-CA^{-1}B \
end{bmatrix}
$
so
$det_{2n}begin{bmatrix}
A & B \
C & D \
end{bmatrix}=det_{n}(A) cdotdet_{n}(D-CA^{-1}B)$
We see that $xI_n$ is invertible matrix when $xneq 0$ and then we state that
$det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=det_{n}(xI_n) cdotdet_{n}(X+Y(xI_n)^{-1}Y)
$
and now let's observe that $det_{n}(xI_n)=x^n$ and
$
X+Y(xI_n)^{-1}Y=X+frac{1}{x}YI_n^{-1}Y=X+frac{1}{x}YI_{n}Y
=X+frac{1}{x}Y^2=X+frac{y^2}{x}I_n
$
so $det_n (X+Y(xI_n)^{-1}Y)=det_{n}left(X+frac{y^2}{x}I_nright) = (x+frac{y^2}{x})^n$
and in the end we can write that $det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=x^n (x+frac{y^2}{x})^n = (x^2+y^2)^n
$ when $xneq 0$.
In the case $x=0$ we see that
$det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=det_{2n}begin{bmatrix}
0 & Y \
-Y & 0 \
end{bmatrix} =(-1)^n det_{2n}begin{bmatrix}
Y & 0 \
0 & -Y \
end{bmatrix} =(-1)^n cdot y^n cdot (-y)^n = (-1)^ncdot (-1)^n cdot y^{2n} = y^{2n}$
Can you maybe find any simpler solution to this task?
matrices determinant block-matrices
$endgroup$
add a comment |
$begingroup$
Can you check my solution to:
Task
Having two matrices $X,Yinmathbb{R}^{n,n}$ where $x,yinmathbb{R}$ and matrices are defined as
$
X=begin{bmatrix}
x & 0 &0 & dots & 0 \
x & x & 0& dots & 0\
x & x & x& dots & 0\
vdots&vdots&vdots&vdots&vdots \
x & x & x & dots & x \
end{bmatrix}
$ and $
Y=begin{bmatrix}
0 & dots & 0 &0 & y \
0 & dots & 0 & y & 0\
0 & dots & y & 0& 0\
vdots&vdots&vdots&vdots&vdots \
y & dots & 0 & 0 & 0 \
end{bmatrix}
$
find the $det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}
$.
Solution:
We can observe that for matrices $A,B,C,Dinmathbb{R}^{n,n}$ when matrix $A$ is invertible then
$begin{bmatrix}
A & B \
C & D \
end{bmatrix}=begin{bmatrix}
A & 0 \
C & I_{n} \
end{bmatrix}cdotbegin{bmatrix}
I_n & A^{-1}B \
0 & D-CA^{-1}B \
end{bmatrix}
$
so
$det_{2n}begin{bmatrix}
A & B \
C & D \
end{bmatrix}=det_{n}(A) cdotdet_{n}(D-CA^{-1}B)$
We see that $xI_n$ is invertible matrix when $xneq 0$ and then we state that
$det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=det_{n}(xI_n) cdotdet_{n}(X+Y(xI_n)^{-1}Y)
$
and now let's observe that $det_{n}(xI_n)=x^n$ and
$
X+Y(xI_n)^{-1}Y=X+frac{1}{x}YI_n^{-1}Y=X+frac{1}{x}YI_{n}Y
=X+frac{1}{x}Y^2=X+frac{y^2}{x}I_n
$
so $det_n (X+Y(xI_n)^{-1}Y)=det_{n}left(X+frac{y^2}{x}I_nright) = (x+frac{y^2}{x})^n$
and in the end we can write that $det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=x^n (x+frac{y^2}{x})^n = (x^2+y^2)^n
$ when $xneq 0$.
In the case $x=0$ we see that
$det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=det_{2n}begin{bmatrix}
0 & Y \
-Y & 0 \
end{bmatrix} =(-1)^n det_{2n}begin{bmatrix}
Y & 0 \
0 & -Y \
end{bmatrix} =(-1)^n cdot y^n cdot (-y)^n = (-1)^ncdot (-1)^n cdot y^{2n} = y^{2n}$
Can you maybe find any simpler solution to this task?
matrices determinant block-matrices
$endgroup$
Can you check my solution to:
Task
Having two matrices $X,Yinmathbb{R}^{n,n}$ where $x,yinmathbb{R}$ and matrices are defined as
$
X=begin{bmatrix}
x & 0 &0 & dots & 0 \
x & x & 0& dots & 0\
x & x & x& dots & 0\
vdots&vdots&vdots&vdots&vdots \
x & x & x & dots & x \
end{bmatrix}
$ and $
Y=begin{bmatrix}
0 & dots & 0 &0 & y \
0 & dots & 0 & y & 0\
0 & dots & y & 0& 0\
vdots&vdots&vdots&vdots&vdots \
y & dots & 0 & 0 & 0 \
end{bmatrix}
$
find the $det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}
$.
Solution:
We can observe that for matrices $A,B,C,Dinmathbb{R}^{n,n}$ when matrix $A$ is invertible then
$begin{bmatrix}
A & B \
C & D \
end{bmatrix}=begin{bmatrix}
A & 0 \
C & I_{n} \
end{bmatrix}cdotbegin{bmatrix}
I_n & A^{-1}B \
0 & D-CA^{-1}B \
end{bmatrix}
$
so
$det_{2n}begin{bmatrix}
A & B \
C & D \
end{bmatrix}=det_{n}(A) cdotdet_{n}(D-CA^{-1}B)$
We see that $xI_n$ is invertible matrix when $xneq 0$ and then we state that
$det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=det_{n}(xI_n) cdotdet_{n}(X+Y(xI_n)^{-1}Y)
$
and now let's observe that $det_{n}(xI_n)=x^n$ and
$
X+Y(xI_n)^{-1}Y=X+frac{1}{x}YI_n^{-1}Y=X+frac{1}{x}YI_{n}Y
=X+frac{1}{x}Y^2=X+frac{y^2}{x}I_n
$
so $det_n (X+Y(xI_n)^{-1}Y)=det_{n}left(X+frac{y^2}{x}I_nright) = (x+frac{y^2}{x})^n$
and in the end we can write that $det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=x^n (x+frac{y^2}{x})^n = (x^2+y^2)^n
$ when $xneq 0$.
In the case $x=0$ we see that
$det_{2n}begin{bmatrix}
xI_n & Y \
-Y & X \
end{bmatrix}=det_{2n}begin{bmatrix}
0 & Y \
-Y & 0 \
end{bmatrix} =(-1)^n det_{2n}begin{bmatrix}
Y & 0 \
0 & -Y \
end{bmatrix} =(-1)^n cdot y^n cdot (-y)^n = (-1)^ncdot (-1)^n cdot y^{2n} = y^{2n}$
Can you maybe find any simpler solution to this task?
matrices determinant block-matrices
matrices determinant block-matrices
edited Jan 5 at 21:11


Davide Giraudo
126k16150261
126k16150261
asked Jan 5 at 19:37
avan1235avan1235
3156
3156
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063114%2fdeterminant-of-matrix-of-submatrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.
$endgroup$
add a comment |
$begingroup$
Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.
$endgroup$
add a comment |
$begingroup$
Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.
$endgroup$
Your derivation of the main result (that the determinant is $(x^2+y^2)^n$) is correct, but your verification is not. You should have $detpmatrix{0&Y\ -Y&0}=det(Y)^2=y^{2n}$. E.g. if you interchange the first and the last column of $pmatrix{0&Y\ -Y&0}$, you get a factor of $-1$. However, the entry $-y$ also contains a minus sign. So, the two minus signs cancel out each other when you compute the determinant. The same holds if you interchange the $j$-th and the $(2n-j)$-th columns of the matrix. Therefore the final determinant does not carry any minus sign.
answered Jan 5 at 19:47


user1551user1551
72.4k566127
72.4k566127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063114%2fdeterminant-of-matrix-of-submatrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown