Evaluating the value of the roots of the expression












0












$begingroup$


I'm attempting this question below, I understand the method when its squared but not cubed. I evaluated $a^2 + b^2 + c^2$ as $(a + b + c)^2 -2(ab + ac + bc)$. I tried to obtain the answer by guess and check, changing a few of the powers around to try and work backwards but to no success. The answer for the question below is 23, and based upon the responses provided $a^4 + b^4 + c^4$ should be a breeze also? Thanks



Q: $x^3 - 2x^2 - 3x + 1 = 0$



$a^3 + b^3 +c^3 =?$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    a,b,c are the roots, right?
    $endgroup$
    – Hello_World
    Jan 6 at 0:12










  • $begingroup$
    Yes, apologies, I added a y instead of a c above.
    $endgroup$
    – Zach
    Jan 6 at 0:13
















0












$begingroup$


I'm attempting this question below, I understand the method when its squared but not cubed. I evaluated $a^2 + b^2 + c^2$ as $(a + b + c)^2 -2(ab + ac + bc)$. I tried to obtain the answer by guess and check, changing a few of the powers around to try and work backwards but to no success. The answer for the question below is 23, and based upon the responses provided $a^4 + b^4 + c^4$ should be a breeze also? Thanks



Q: $x^3 - 2x^2 - 3x + 1 = 0$



$a^3 + b^3 +c^3 =?$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    a,b,c are the roots, right?
    $endgroup$
    – Hello_World
    Jan 6 at 0:12










  • $begingroup$
    Yes, apologies, I added a y instead of a c above.
    $endgroup$
    – Zach
    Jan 6 at 0:13














0












0








0


1



$begingroup$


I'm attempting this question below, I understand the method when its squared but not cubed. I evaluated $a^2 + b^2 + c^2$ as $(a + b + c)^2 -2(ab + ac + bc)$. I tried to obtain the answer by guess and check, changing a few of the powers around to try and work backwards but to no success. The answer for the question below is 23, and based upon the responses provided $a^4 + b^4 + c^4$ should be a breeze also? Thanks



Q: $x^3 - 2x^2 - 3x + 1 = 0$



$a^3 + b^3 +c^3 =?$










share|cite|improve this question











$endgroup$




I'm attempting this question below, I understand the method when its squared but not cubed. I evaluated $a^2 + b^2 + c^2$ as $(a + b + c)^2 -2(ab + ac + bc)$. I tried to obtain the answer by guess and check, changing a few of the powers around to try and work backwards but to no success. The answer for the question below is 23, and based upon the responses provided $a^4 + b^4 + c^4$ should be a breeze also? Thanks



Q: $x^3 - 2x^2 - 3x + 1 = 0$



$a^3 + b^3 +c^3 =?$







polynomials roots






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 6 at 0:13







Zach

















asked Jan 6 at 0:11









ZachZach

365




365








  • 1




    $begingroup$
    a,b,c are the roots, right?
    $endgroup$
    – Hello_World
    Jan 6 at 0:12










  • $begingroup$
    Yes, apologies, I added a y instead of a c above.
    $endgroup$
    – Zach
    Jan 6 at 0:13














  • 1




    $begingroup$
    a,b,c are the roots, right?
    $endgroup$
    – Hello_World
    Jan 6 at 0:12










  • $begingroup$
    Yes, apologies, I added a y instead of a c above.
    $endgroup$
    – Zach
    Jan 6 at 0:13








1




1




$begingroup$
a,b,c are the roots, right?
$endgroup$
– Hello_World
Jan 6 at 0:12




$begingroup$
a,b,c are the roots, right?
$endgroup$
– Hello_World
Jan 6 at 0:12












$begingroup$
Yes, apologies, I added a y instead of a c above.
$endgroup$
– Zach
Jan 6 at 0:13




$begingroup$
Yes, apologies, I added a y instead of a c above.
$endgroup$
– Zach
Jan 6 at 0:13










3 Answers
3






active

oldest

votes


















1












$begingroup$

I suggest that you check this out: https://en.m.wikipedia.org/wiki/Newton%27s_identities



Now, the idea, as you guess, is to write $a^3+b^3+c^3$ as a function of the symmetric elementary polynomials.



Now, $a^3=2a^2+3a-1$, same for $b,c$.



Thus $a^3+b^3+c^3=2(a^2+b^2+c^2)+3(a+b+c)-3$, hence
$a^3+b^3+c^3=2(a+b+c)^2+3(a+b+c)-4(ab+bc+ca)-3$.



Finally, $a^3+b^3+c^3=2*(2)^2+3*(2)-4*(-3)-3=23$.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    $$x^3+1=2x^2+3x$$



    Cubing both sides $$(x^3+1)^3=(2x^2+3x)^3=(2x^2)^3+(3x)^3+3(2x^2)(3x)(2x^2+3x)$$



    Setting $x^3=y$ $$(y+1)^3=8y^2+27y+18y(y+1)$$



    $$iff y^3+y^2(3-8-18)+y(cdots)+cdots=0$$ whose roots are $a^3,b^3,c^3$



    $$a^3+b^3+c^3=dfrac{23}1$$






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      By Vieta's formulas:
      $$a+b+c=2, ab+bc+ca=-3, abc=-1.$$
      Then you can use the formulas:
      $$begin{align}A=a^2+b^2+c^2&=(a+b+c)^2-2(ab+bc+ca)=\
      &=2^2-2(-3)=\
      &=10.end{align}$$

      $$begin{align}B=a^3+b^3+c^3&=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc=\
      &=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]+3abc=\
      &=2(2^2-3(-3))+3(-1)=\
      &=23.end{align}$$

      $$begin{align}C=a^4+b^4+c^4&=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)=\
      &=A^2-2[(ab+bc+ca)^2-2abc(a+b+c)]=\
      &=10^2-2[(-3)^2-2(-1)2]=\
      &=126.end{align}$$

      $$begin{align}D=a^5+b^5+c^5&=(a+b+c)^5-\
      & 5(a+b)(b+c)(c+a)(a^2+b^2+c^2+ab+bc+ca)=\
      &=2^5-frac{5[(a+b+c)^3-a^3-b^3-c^3]}{3}(a^2+b^2+c^2+ab+bc+ca)=\
      &=2^5-frac{5[2^3-B]}{3}(A+(-3))=\
      &=2^5-frac{5[-15]}{3}(7)=\
      &=207.end{align}$$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063351%2fevaluating-the-value-of-the-roots-of-the-expression%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        I suggest that you check this out: https://en.m.wikipedia.org/wiki/Newton%27s_identities



        Now, the idea, as you guess, is to write $a^3+b^3+c^3$ as a function of the symmetric elementary polynomials.



        Now, $a^3=2a^2+3a-1$, same for $b,c$.



        Thus $a^3+b^3+c^3=2(a^2+b^2+c^2)+3(a+b+c)-3$, hence
        $a^3+b^3+c^3=2(a+b+c)^2+3(a+b+c)-4(ab+bc+ca)-3$.



        Finally, $a^3+b^3+c^3=2*(2)^2+3*(2)-4*(-3)-3=23$.






        share|cite|improve this answer









        $endgroup$


















          1












          $begingroup$

          I suggest that you check this out: https://en.m.wikipedia.org/wiki/Newton%27s_identities



          Now, the idea, as you guess, is to write $a^3+b^3+c^3$ as a function of the symmetric elementary polynomials.



          Now, $a^3=2a^2+3a-1$, same for $b,c$.



          Thus $a^3+b^3+c^3=2(a^2+b^2+c^2)+3(a+b+c)-3$, hence
          $a^3+b^3+c^3=2(a+b+c)^2+3(a+b+c)-4(ab+bc+ca)-3$.



          Finally, $a^3+b^3+c^3=2*(2)^2+3*(2)-4*(-3)-3=23$.






          share|cite|improve this answer









          $endgroup$
















            1












            1








            1





            $begingroup$

            I suggest that you check this out: https://en.m.wikipedia.org/wiki/Newton%27s_identities



            Now, the idea, as you guess, is to write $a^3+b^3+c^3$ as a function of the symmetric elementary polynomials.



            Now, $a^3=2a^2+3a-1$, same for $b,c$.



            Thus $a^3+b^3+c^3=2(a^2+b^2+c^2)+3(a+b+c)-3$, hence
            $a^3+b^3+c^3=2(a+b+c)^2+3(a+b+c)-4(ab+bc+ca)-3$.



            Finally, $a^3+b^3+c^3=2*(2)^2+3*(2)-4*(-3)-3=23$.






            share|cite|improve this answer









            $endgroup$



            I suggest that you check this out: https://en.m.wikipedia.org/wiki/Newton%27s_identities



            Now, the idea, as you guess, is to write $a^3+b^3+c^3$ as a function of the symmetric elementary polynomials.



            Now, $a^3=2a^2+3a-1$, same for $b,c$.



            Thus $a^3+b^3+c^3=2(a^2+b^2+c^2)+3(a+b+c)-3$, hence
            $a^3+b^3+c^3=2(a+b+c)^2+3(a+b+c)-4(ab+bc+ca)-3$.



            Finally, $a^3+b^3+c^3=2*(2)^2+3*(2)-4*(-3)-3=23$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 6 at 0:20









            MindlackMindlack

            3,11717




            3,11717























                1












                $begingroup$

                $$x^3+1=2x^2+3x$$



                Cubing both sides $$(x^3+1)^3=(2x^2+3x)^3=(2x^2)^3+(3x)^3+3(2x^2)(3x)(2x^2+3x)$$



                Setting $x^3=y$ $$(y+1)^3=8y^2+27y+18y(y+1)$$



                $$iff y^3+y^2(3-8-18)+y(cdots)+cdots=0$$ whose roots are $a^3,b^3,c^3$



                $$a^3+b^3+c^3=dfrac{23}1$$






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$

                  $$x^3+1=2x^2+3x$$



                  Cubing both sides $$(x^3+1)^3=(2x^2+3x)^3=(2x^2)^3+(3x)^3+3(2x^2)(3x)(2x^2+3x)$$



                  Setting $x^3=y$ $$(y+1)^3=8y^2+27y+18y(y+1)$$



                  $$iff y^3+y^2(3-8-18)+y(cdots)+cdots=0$$ whose roots are $a^3,b^3,c^3$



                  $$a^3+b^3+c^3=dfrac{23}1$$






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    $$x^3+1=2x^2+3x$$



                    Cubing both sides $$(x^3+1)^3=(2x^2+3x)^3=(2x^2)^3+(3x)^3+3(2x^2)(3x)(2x^2+3x)$$



                    Setting $x^3=y$ $$(y+1)^3=8y^2+27y+18y(y+1)$$



                    $$iff y^3+y^2(3-8-18)+y(cdots)+cdots=0$$ whose roots are $a^3,b^3,c^3$



                    $$a^3+b^3+c^3=dfrac{23}1$$






                    share|cite|improve this answer









                    $endgroup$



                    $$x^3+1=2x^2+3x$$



                    Cubing both sides $$(x^3+1)^3=(2x^2+3x)^3=(2x^2)^3+(3x)^3+3(2x^2)(3x)(2x^2+3x)$$



                    Setting $x^3=y$ $$(y+1)^3=8y^2+27y+18y(y+1)$$



                    $$iff y^3+y^2(3-8-18)+y(cdots)+cdots=0$$ whose roots are $a^3,b^3,c^3$



                    $$a^3+b^3+c^3=dfrac{23}1$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 6 at 10:15









                    lab bhattacharjeelab bhattacharjee

                    224k15156274




                    224k15156274























                        0












                        $begingroup$

                        By Vieta's formulas:
                        $$a+b+c=2, ab+bc+ca=-3, abc=-1.$$
                        Then you can use the formulas:
                        $$begin{align}A=a^2+b^2+c^2&=(a+b+c)^2-2(ab+bc+ca)=\
                        &=2^2-2(-3)=\
                        &=10.end{align}$$

                        $$begin{align}B=a^3+b^3+c^3&=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc=\
                        &=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]+3abc=\
                        &=2(2^2-3(-3))+3(-1)=\
                        &=23.end{align}$$

                        $$begin{align}C=a^4+b^4+c^4&=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)=\
                        &=A^2-2[(ab+bc+ca)^2-2abc(a+b+c)]=\
                        &=10^2-2[(-3)^2-2(-1)2]=\
                        &=126.end{align}$$

                        $$begin{align}D=a^5+b^5+c^5&=(a+b+c)^5-\
                        & 5(a+b)(b+c)(c+a)(a^2+b^2+c^2+ab+bc+ca)=\
                        &=2^5-frac{5[(a+b+c)^3-a^3-b^3-c^3]}{3}(a^2+b^2+c^2+ab+bc+ca)=\
                        &=2^5-frac{5[2^3-B]}{3}(A+(-3))=\
                        &=2^5-frac{5[-15]}{3}(7)=\
                        &=207.end{align}$$






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          By Vieta's formulas:
                          $$a+b+c=2, ab+bc+ca=-3, abc=-1.$$
                          Then you can use the formulas:
                          $$begin{align}A=a^2+b^2+c^2&=(a+b+c)^2-2(ab+bc+ca)=\
                          &=2^2-2(-3)=\
                          &=10.end{align}$$

                          $$begin{align}B=a^3+b^3+c^3&=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc=\
                          &=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]+3abc=\
                          &=2(2^2-3(-3))+3(-1)=\
                          &=23.end{align}$$

                          $$begin{align}C=a^4+b^4+c^4&=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)=\
                          &=A^2-2[(ab+bc+ca)^2-2abc(a+b+c)]=\
                          &=10^2-2[(-3)^2-2(-1)2]=\
                          &=126.end{align}$$

                          $$begin{align}D=a^5+b^5+c^5&=(a+b+c)^5-\
                          & 5(a+b)(b+c)(c+a)(a^2+b^2+c^2+ab+bc+ca)=\
                          &=2^5-frac{5[(a+b+c)^3-a^3-b^3-c^3]}{3}(a^2+b^2+c^2+ab+bc+ca)=\
                          &=2^5-frac{5[2^3-B]}{3}(A+(-3))=\
                          &=2^5-frac{5[-15]}{3}(7)=\
                          &=207.end{align}$$






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            By Vieta's formulas:
                            $$a+b+c=2, ab+bc+ca=-3, abc=-1.$$
                            Then you can use the formulas:
                            $$begin{align}A=a^2+b^2+c^2&=(a+b+c)^2-2(ab+bc+ca)=\
                            &=2^2-2(-3)=\
                            &=10.end{align}$$

                            $$begin{align}B=a^3+b^3+c^3&=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc=\
                            &=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]+3abc=\
                            &=2(2^2-3(-3))+3(-1)=\
                            &=23.end{align}$$

                            $$begin{align}C=a^4+b^4+c^4&=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)=\
                            &=A^2-2[(ab+bc+ca)^2-2abc(a+b+c)]=\
                            &=10^2-2[(-3)^2-2(-1)2]=\
                            &=126.end{align}$$

                            $$begin{align}D=a^5+b^5+c^5&=(a+b+c)^5-\
                            & 5(a+b)(b+c)(c+a)(a^2+b^2+c^2+ab+bc+ca)=\
                            &=2^5-frac{5[(a+b+c)^3-a^3-b^3-c^3]}{3}(a^2+b^2+c^2+ab+bc+ca)=\
                            &=2^5-frac{5[2^3-B]}{3}(A+(-3))=\
                            &=2^5-frac{5[-15]}{3}(7)=\
                            &=207.end{align}$$






                            share|cite|improve this answer









                            $endgroup$



                            By Vieta's formulas:
                            $$a+b+c=2, ab+bc+ca=-3, abc=-1.$$
                            Then you can use the formulas:
                            $$begin{align}A=a^2+b^2+c^2&=(a+b+c)^2-2(ab+bc+ca)=\
                            &=2^2-2(-3)=\
                            &=10.end{align}$$

                            $$begin{align}B=a^3+b^3+c^3&=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc=\
                            &=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]+3abc=\
                            &=2(2^2-3(-3))+3(-1)=\
                            &=23.end{align}$$

                            $$begin{align}C=a^4+b^4+c^4&=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)=\
                            &=A^2-2[(ab+bc+ca)^2-2abc(a+b+c)]=\
                            &=10^2-2[(-3)^2-2(-1)2]=\
                            &=126.end{align}$$

                            $$begin{align}D=a^5+b^5+c^5&=(a+b+c)^5-\
                            & 5(a+b)(b+c)(c+a)(a^2+b^2+c^2+ab+bc+ca)=\
                            &=2^5-frac{5[(a+b+c)^3-a^3-b^3-c^3]}{3}(a^2+b^2+c^2+ab+bc+ca)=\
                            &=2^5-frac{5[2^3-B]}{3}(A+(-3))=\
                            &=2^5-frac{5[-15]}{3}(7)=\
                            &=207.end{align}$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 6 at 11:56









                            farruhotafarruhota

                            19.8k2738




                            19.8k2738






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063351%2fevaluating-the-value-of-the-roots-of-the-expression%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                                Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                                A Topological Invariant for $pi_3(U(n))$