Let $A= begin{pmatrix} 8&2 \ -8&-2 end{pmatrix}$. Find the entry in the first row and second column...
$begingroup$
I have tried diagonalizing the matrix and obtained:
$A=PDP^{-1}$.
Where:
$P=begin{pmatrix} 1&1 \ -4&-1 end{pmatrix}$
$D=begin{pmatrix} 0&0 \ 0&6 end{pmatrix}$
$P^{-1}=frac{1}{3}begin{pmatrix} -1&-1 \ 4&1 end{pmatrix}$.
So that $A^{2014}=PD^{2014}P^{-1}$
But i just want to know whether there is an alternate method.
linear-algebra eigenvalues-eigenvectors diagonalization
$endgroup$
add a comment |
$begingroup$
I have tried diagonalizing the matrix and obtained:
$A=PDP^{-1}$.
Where:
$P=begin{pmatrix} 1&1 \ -4&-1 end{pmatrix}$
$D=begin{pmatrix} 0&0 \ 0&6 end{pmatrix}$
$P^{-1}=frac{1}{3}begin{pmatrix} -1&-1 \ 4&1 end{pmatrix}$.
So that $A^{2014}=PD^{2014}P^{-1}$
But i just want to know whether there is an alternate method.
linear-algebra eigenvalues-eigenvectors diagonalization
$endgroup$
1
$begingroup$
This is the standard elegant way to do it.I don't know another method other than brute force.
$endgroup$
– Ethan Bolker
Jan 6 at 0:19
1
$begingroup$
I think that what you did is very well, other ways will come to the decomposition anyways
$endgroup$
– José Alejandro Aburto Araneda
Jan 6 at 0:19
add a comment |
$begingroup$
I have tried diagonalizing the matrix and obtained:
$A=PDP^{-1}$.
Where:
$P=begin{pmatrix} 1&1 \ -4&-1 end{pmatrix}$
$D=begin{pmatrix} 0&0 \ 0&6 end{pmatrix}$
$P^{-1}=frac{1}{3}begin{pmatrix} -1&-1 \ 4&1 end{pmatrix}$.
So that $A^{2014}=PD^{2014}P^{-1}$
But i just want to know whether there is an alternate method.
linear-algebra eigenvalues-eigenvectors diagonalization
$endgroup$
I have tried diagonalizing the matrix and obtained:
$A=PDP^{-1}$.
Where:
$P=begin{pmatrix} 1&1 \ -4&-1 end{pmatrix}$
$D=begin{pmatrix} 0&0 \ 0&6 end{pmatrix}$
$P^{-1}=frac{1}{3}begin{pmatrix} -1&-1 \ 4&1 end{pmatrix}$.
So that $A^{2014}=PD^{2014}P^{-1}$
But i just want to know whether there is an alternate method.
linear-algebra eigenvalues-eigenvectors diagonalization
linear-algebra eigenvalues-eigenvectors diagonalization
edited Jan 6 at 0:18
vadim123
75.9k897189
75.9k897189
asked Jan 6 at 0:16
DD90DD90
2628
2628
1
$begingroup$
This is the standard elegant way to do it.I don't know another method other than brute force.
$endgroup$
– Ethan Bolker
Jan 6 at 0:19
1
$begingroup$
I think that what you did is very well, other ways will come to the decomposition anyways
$endgroup$
– José Alejandro Aburto Araneda
Jan 6 at 0:19
add a comment |
1
$begingroup$
This is the standard elegant way to do it.I don't know another method other than brute force.
$endgroup$
– Ethan Bolker
Jan 6 at 0:19
1
$begingroup$
I think that what you did is very well, other ways will come to the decomposition anyways
$endgroup$
– José Alejandro Aburto Araneda
Jan 6 at 0:19
1
1
$begingroup$
This is the standard elegant way to do it.I don't know another method other than brute force.
$endgroup$
– Ethan Bolker
Jan 6 at 0:19
$begingroup$
This is the standard elegant way to do it.I don't know another method other than brute force.
$endgroup$
– Ethan Bolker
Jan 6 at 0:19
1
1
$begingroup$
I think that what you did is very well, other ways will come to the decomposition anyways
$endgroup$
– José Alejandro Aburto Araneda
Jan 6 at 0:19
$begingroup$
I think that what you did is very well, other ways will come to the decomposition anyways
$endgroup$
– José Alejandro Aburto Araneda
Jan 6 at 0:19
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint Show that
$$A^2=6A$$
Note: You can show the stronger statement:
$$begin{pmatrix} 8&2 \ -8&-2 end{pmatrix}begin{pmatrix} a&b \ -a&-b end{pmatrix}=6begin{pmatrix} a&b \ -a&-b end{pmatrix}$$
but this is overkill.
$endgroup$
$begingroup$
This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
$endgroup$
– Mindlack
Jan 6 at 0:25
$begingroup$
Very nice indeed!
$endgroup$
– Mike
Jan 6 at 0:33
$begingroup$
Can you please explain it a little further how to proceed with this
$endgroup$
– DD90
Jan 6 at 0:35
1
$begingroup$
If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
$endgroup$
– Mindlack
Jan 6 at 0:52
$begingroup$
@DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
$endgroup$
– N. S.
Jan 6 at 3:34
add a comment |
$begingroup$
By the Cayley-Hamilton theorem, $A^{2014}=aI+bA$ for some unknown coefficients $a$ and $b$. This equation is also satisfied by $A$’s eigenvalues, which generates the system of equations $a=0$, $a+6b=6^{2014}$, from which $b=6^{2013}$. The required entry of $A^{2014}$ is therefore $2cdot6^{2013}$.
Note, too, that the eigenvalues of $A$ can be found by inspection. Its rows are obviously linearly dependent, so one of its eigenvalues is $0$. The other eigenvalue is then equal to $A$’s trace.
$endgroup$
add a comment |
$begingroup$
Since $A$ is clearly rank-1 (the two columns are multiples), you can directly decompose it into the outer product of two vectors:
$$A=begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}$$
Which now immediately gives you
$$A^{2014}=left(begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}right)^{2014}=begin{bmatrix}1\-1end{bmatrix}left(begin{bmatrix}8&2end{bmatrix}begin{bmatrix}1\-1end{bmatrix}right)^{2013}begin{bmatrix}8&2end{bmatrix}=begin{bmatrix}1\-1end{bmatrix}6^{2013}begin{bmatrix}8&2end{bmatrix}=6^{2013}A$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063354%2flet-a-beginpmatrix-82-8-2-endpmatrix-find-the-entry-in-the-first%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint Show that
$$A^2=6A$$
Note: You can show the stronger statement:
$$begin{pmatrix} 8&2 \ -8&-2 end{pmatrix}begin{pmatrix} a&b \ -a&-b end{pmatrix}=6begin{pmatrix} a&b \ -a&-b end{pmatrix}$$
but this is overkill.
$endgroup$
$begingroup$
This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
$endgroup$
– Mindlack
Jan 6 at 0:25
$begingroup$
Very nice indeed!
$endgroup$
– Mike
Jan 6 at 0:33
$begingroup$
Can you please explain it a little further how to proceed with this
$endgroup$
– DD90
Jan 6 at 0:35
1
$begingroup$
If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
$endgroup$
– Mindlack
Jan 6 at 0:52
$begingroup$
@DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
$endgroup$
– N. S.
Jan 6 at 3:34
add a comment |
$begingroup$
Hint Show that
$$A^2=6A$$
Note: You can show the stronger statement:
$$begin{pmatrix} 8&2 \ -8&-2 end{pmatrix}begin{pmatrix} a&b \ -a&-b end{pmatrix}=6begin{pmatrix} a&b \ -a&-b end{pmatrix}$$
but this is overkill.
$endgroup$
$begingroup$
This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
$endgroup$
– Mindlack
Jan 6 at 0:25
$begingroup$
Very nice indeed!
$endgroup$
– Mike
Jan 6 at 0:33
$begingroup$
Can you please explain it a little further how to proceed with this
$endgroup$
– DD90
Jan 6 at 0:35
1
$begingroup$
If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
$endgroup$
– Mindlack
Jan 6 at 0:52
$begingroup$
@DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
$endgroup$
– N. S.
Jan 6 at 3:34
add a comment |
$begingroup$
Hint Show that
$$A^2=6A$$
Note: You can show the stronger statement:
$$begin{pmatrix} 8&2 \ -8&-2 end{pmatrix}begin{pmatrix} a&b \ -a&-b end{pmatrix}=6begin{pmatrix} a&b \ -a&-b end{pmatrix}$$
but this is overkill.
$endgroup$
Hint Show that
$$A^2=6A$$
Note: You can show the stronger statement:
$$begin{pmatrix} 8&2 \ -8&-2 end{pmatrix}begin{pmatrix} a&b \ -a&-b end{pmatrix}=6begin{pmatrix} a&b \ -a&-b end{pmatrix}$$
but this is overkill.
answered Jan 6 at 0:23
N. S.N. S.
103k6111208
103k6111208
$begingroup$
This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
$endgroup$
– Mindlack
Jan 6 at 0:25
$begingroup$
Very nice indeed!
$endgroup$
– Mike
Jan 6 at 0:33
$begingroup$
Can you please explain it a little further how to proceed with this
$endgroup$
– DD90
Jan 6 at 0:35
1
$begingroup$
If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
$endgroup$
– Mindlack
Jan 6 at 0:52
$begingroup$
@DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
$endgroup$
– N. S.
Jan 6 at 3:34
add a comment |
$begingroup$
This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
$endgroup$
– Mindlack
Jan 6 at 0:25
$begingroup$
Very nice indeed!
$endgroup$
– Mike
Jan 6 at 0:33
$begingroup$
Can you please explain it a little further how to proceed with this
$endgroup$
– DD90
Jan 6 at 0:35
1
$begingroup$
If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
$endgroup$
– Mindlack
Jan 6 at 0:52
$begingroup$
@DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
$endgroup$
– N. S.
Jan 6 at 3:34
$begingroup$
This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
$endgroup$
– Mindlack
Jan 6 at 0:25
$begingroup$
This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
$endgroup$
– Mindlack
Jan 6 at 0:25
$begingroup$
Very nice indeed!
$endgroup$
– Mike
Jan 6 at 0:33
$begingroup$
Very nice indeed!
$endgroup$
– Mike
Jan 6 at 0:33
$begingroup$
Can you please explain it a little further how to proceed with this
$endgroup$
– DD90
Jan 6 at 0:35
$begingroup$
Can you please explain it a little further how to proceed with this
$endgroup$
– DD90
Jan 6 at 0:35
1
1
$begingroup$
If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
$endgroup$
– Mindlack
Jan 6 at 0:52
$begingroup$
If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
$endgroup$
– Mindlack
Jan 6 at 0:52
$begingroup$
@DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
$endgroup$
– N. S.
Jan 6 at 3:34
$begingroup$
@DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
$endgroup$
– N. S.
Jan 6 at 3:34
add a comment |
$begingroup$
By the Cayley-Hamilton theorem, $A^{2014}=aI+bA$ for some unknown coefficients $a$ and $b$. This equation is also satisfied by $A$’s eigenvalues, which generates the system of equations $a=0$, $a+6b=6^{2014}$, from which $b=6^{2013}$. The required entry of $A^{2014}$ is therefore $2cdot6^{2013}$.
Note, too, that the eigenvalues of $A$ can be found by inspection. Its rows are obviously linearly dependent, so one of its eigenvalues is $0$. The other eigenvalue is then equal to $A$’s trace.
$endgroup$
add a comment |
$begingroup$
By the Cayley-Hamilton theorem, $A^{2014}=aI+bA$ for some unknown coefficients $a$ and $b$. This equation is also satisfied by $A$’s eigenvalues, which generates the system of equations $a=0$, $a+6b=6^{2014}$, from which $b=6^{2013}$. The required entry of $A^{2014}$ is therefore $2cdot6^{2013}$.
Note, too, that the eigenvalues of $A$ can be found by inspection. Its rows are obviously linearly dependent, so one of its eigenvalues is $0$. The other eigenvalue is then equal to $A$’s trace.
$endgroup$
add a comment |
$begingroup$
By the Cayley-Hamilton theorem, $A^{2014}=aI+bA$ for some unknown coefficients $a$ and $b$. This equation is also satisfied by $A$’s eigenvalues, which generates the system of equations $a=0$, $a+6b=6^{2014}$, from which $b=6^{2013}$. The required entry of $A^{2014}$ is therefore $2cdot6^{2013}$.
Note, too, that the eigenvalues of $A$ can be found by inspection. Its rows are obviously linearly dependent, so one of its eigenvalues is $0$. The other eigenvalue is then equal to $A$’s trace.
$endgroup$
By the Cayley-Hamilton theorem, $A^{2014}=aI+bA$ for some unknown coefficients $a$ and $b$. This equation is also satisfied by $A$’s eigenvalues, which generates the system of equations $a=0$, $a+6b=6^{2014}$, from which $b=6^{2013}$. The required entry of $A^{2014}$ is therefore $2cdot6^{2013}$.
Note, too, that the eigenvalues of $A$ can be found by inspection. Its rows are obviously linearly dependent, so one of its eigenvalues is $0$. The other eigenvalue is then equal to $A$’s trace.
edited Jan 6 at 1:08
answered Jan 6 at 1:02
amdamd
29.7k21050
29.7k21050
add a comment |
add a comment |
$begingroup$
Since $A$ is clearly rank-1 (the two columns are multiples), you can directly decompose it into the outer product of two vectors:
$$A=begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}$$
Which now immediately gives you
$$A^{2014}=left(begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}right)^{2014}=begin{bmatrix}1\-1end{bmatrix}left(begin{bmatrix}8&2end{bmatrix}begin{bmatrix}1\-1end{bmatrix}right)^{2013}begin{bmatrix}8&2end{bmatrix}=begin{bmatrix}1\-1end{bmatrix}6^{2013}begin{bmatrix}8&2end{bmatrix}=6^{2013}A$$
$endgroup$
add a comment |
$begingroup$
Since $A$ is clearly rank-1 (the two columns are multiples), you can directly decompose it into the outer product of two vectors:
$$A=begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}$$
Which now immediately gives you
$$A^{2014}=left(begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}right)^{2014}=begin{bmatrix}1\-1end{bmatrix}left(begin{bmatrix}8&2end{bmatrix}begin{bmatrix}1\-1end{bmatrix}right)^{2013}begin{bmatrix}8&2end{bmatrix}=begin{bmatrix}1\-1end{bmatrix}6^{2013}begin{bmatrix}8&2end{bmatrix}=6^{2013}A$$
$endgroup$
add a comment |
$begingroup$
Since $A$ is clearly rank-1 (the two columns are multiples), you can directly decompose it into the outer product of two vectors:
$$A=begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}$$
Which now immediately gives you
$$A^{2014}=left(begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}right)^{2014}=begin{bmatrix}1\-1end{bmatrix}left(begin{bmatrix}8&2end{bmatrix}begin{bmatrix}1\-1end{bmatrix}right)^{2013}begin{bmatrix}8&2end{bmatrix}=begin{bmatrix}1\-1end{bmatrix}6^{2013}begin{bmatrix}8&2end{bmatrix}=6^{2013}A$$
$endgroup$
Since $A$ is clearly rank-1 (the two columns are multiples), you can directly decompose it into the outer product of two vectors:
$$A=begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}$$
Which now immediately gives you
$$A^{2014}=left(begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}right)^{2014}=begin{bmatrix}1\-1end{bmatrix}left(begin{bmatrix}8&2end{bmatrix}begin{bmatrix}1\-1end{bmatrix}right)^{2013}begin{bmatrix}8&2end{bmatrix}=begin{bmatrix}1\-1end{bmatrix}6^{2013}begin{bmatrix}8&2end{bmatrix}=6^{2013}A$$
answered Jan 6 at 3:26
obscuransobscurans
1,027311
1,027311
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063354%2flet-a-beginpmatrix-82-8-2-endpmatrix-find-the-entry-in-the-first%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
This is the standard elegant way to do it.I don't know another method other than brute force.
$endgroup$
– Ethan Bolker
Jan 6 at 0:19
1
$begingroup$
I think that what you did is very well, other ways will come to the decomposition anyways
$endgroup$
– José Alejandro Aburto Araneda
Jan 6 at 0:19