Let $A= begin{pmatrix} 8&2 \ -8&-2 end{pmatrix}$. Find the entry in the first row and second column...












4












$begingroup$


I have tried diagonalizing the matrix and obtained:
$A=PDP^{-1}$.

Where:
$P=begin{pmatrix} 1&1 \ -4&-1 end{pmatrix}$
$D=begin{pmatrix} 0&0 \ 0&6 end{pmatrix}$
$P^{-1}=frac{1}{3}begin{pmatrix} -1&-1 \ 4&1 end{pmatrix}$.



So that $A^{2014}=PD^{2014}P^{-1}$

But i just want to know whether there is an alternate method.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    This is the standard elegant way to do it.I don't know another method other than brute force.
    $endgroup$
    – Ethan Bolker
    Jan 6 at 0:19






  • 1




    $begingroup$
    I think that what you did is very well, other ways will come to the decomposition anyways
    $endgroup$
    – José Alejandro Aburto Araneda
    Jan 6 at 0:19
















4












$begingroup$


I have tried diagonalizing the matrix and obtained:
$A=PDP^{-1}$.

Where:
$P=begin{pmatrix} 1&1 \ -4&-1 end{pmatrix}$
$D=begin{pmatrix} 0&0 \ 0&6 end{pmatrix}$
$P^{-1}=frac{1}{3}begin{pmatrix} -1&-1 \ 4&1 end{pmatrix}$.



So that $A^{2014}=PD^{2014}P^{-1}$

But i just want to know whether there is an alternate method.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    This is the standard elegant way to do it.I don't know another method other than brute force.
    $endgroup$
    – Ethan Bolker
    Jan 6 at 0:19






  • 1




    $begingroup$
    I think that what you did is very well, other ways will come to the decomposition anyways
    $endgroup$
    – José Alejandro Aburto Araneda
    Jan 6 at 0:19














4












4








4


2



$begingroup$


I have tried diagonalizing the matrix and obtained:
$A=PDP^{-1}$.

Where:
$P=begin{pmatrix} 1&1 \ -4&-1 end{pmatrix}$
$D=begin{pmatrix} 0&0 \ 0&6 end{pmatrix}$
$P^{-1}=frac{1}{3}begin{pmatrix} -1&-1 \ 4&1 end{pmatrix}$.



So that $A^{2014}=PD^{2014}P^{-1}$

But i just want to know whether there is an alternate method.










share|cite|improve this question











$endgroup$




I have tried diagonalizing the matrix and obtained:
$A=PDP^{-1}$.

Where:
$P=begin{pmatrix} 1&1 \ -4&-1 end{pmatrix}$
$D=begin{pmatrix} 0&0 \ 0&6 end{pmatrix}$
$P^{-1}=frac{1}{3}begin{pmatrix} -1&-1 \ 4&1 end{pmatrix}$.



So that $A^{2014}=PD^{2014}P^{-1}$

But i just want to know whether there is an alternate method.







linear-algebra eigenvalues-eigenvectors diagonalization






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 6 at 0:18









vadim123

75.9k897189




75.9k897189










asked Jan 6 at 0:16









DD90DD90

2628




2628








  • 1




    $begingroup$
    This is the standard elegant way to do it.I don't know another method other than brute force.
    $endgroup$
    – Ethan Bolker
    Jan 6 at 0:19






  • 1




    $begingroup$
    I think that what you did is very well, other ways will come to the decomposition anyways
    $endgroup$
    – José Alejandro Aburto Araneda
    Jan 6 at 0:19














  • 1




    $begingroup$
    This is the standard elegant way to do it.I don't know another method other than brute force.
    $endgroup$
    – Ethan Bolker
    Jan 6 at 0:19






  • 1




    $begingroup$
    I think that what you did is very well, other ways will come to the decomposition anyways
    $endgroup$
    – José Alejandro Aburto Araneda
    Jan 6 at 0:19








1




1




$begingroup$
This is the standard elegant way to do it.I don't know another method other than brute force.
$endgroup$
– Ethan Bolker
Jan 6 at 0:19




$begingroup$
This is the standard elegant way to do it.I don't know another method other than brute force.
$endgroup$
– Ethan Bolker
Jan 6 at 0:19




1




1




$begingroup$
I think that what you did is very well, other ways will come to the decomposition anyways
$endgroup$
– José Alejandro Aburto Araneda
Jan 6 at 0:19




$begingroup$
I think that what you did is very well, other ways will come to the decomposition anyways
$endgroup$
– José Alejandro Aburto Araneda
Jan 6 at 0:19










3 Answers
3






active

oldest

votes


















5












$begingroup$

Hint Show that
$$A^2=6A$$



Note: You can show the stronger statement:
$$begin{pmatrix} 8&2 \ -8&-2 end{pmatrix}begin{pmatrix} a&b \ -a&-b end{pmatrix}=6begin{pmatrix} a&b \ -a&-b end{pmatrix}$$
but this is overkill.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
    $endgroup$
    – Mindlack
    Jan 6 at 0:25










  • $begingroup$
    Very nice indeed!
    $endgroup$
    – Mike
    Jan 6 at 0:33










  • $begingroup$
    Can you please explain it a little further how to proceed with this
    $endgroup$
    – DD90
    Jan 6 at 0:35






  • 1




    $begingroup$
    If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
    $endgroup$
    – Mindlack
    Jan 6 at 0:52










  • $begingroup$
    @DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
    $endgroup$
    – N. S.
    Jan 6 at 3:34



















2












$begingroup$

By the Cayley-Hamilton theorem, $A^{2014}=aI+bA$ for some unknown coefficients $a$ and $b$. This equation is also satisfied by $A$’s eigenvalues, which generates the system of equations $a=0$, $a+6b=6^{2014}$, from which $b=6^{2013}$. The required entry of $A^{2014}$ is therefore $2cdot6^{2013}$.



Note, too, that the eigenvalues of $A$ can be found by inspection. Its rows are obviously linearly dependent, so one of its eigenvalues is $0$. The other eigenvalue is then equal to $A$’s trace.






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    Since $A$ is clearly rank-1 (the two columns are multiples), you can directly decompose it into the outer product of two vectors:
    $$A=begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}$$



    Which now immediately gives you
    $$A^{2014}=left(begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}right)^{2014}=begin{bmatrix}1\-1end{bmatrix}left(begin{bmatrix}8&2end{bmatrix}begin{bmatrix}1\-1end{bmatrix}right)^{2013}begin{bmatrix}8&2end{bmatrix}=begin{bmatrix}1\-1end{bmatrix}6^{2013}begin{bmatrix}8&2end{bmatrix}=6^{2013}A$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063354%2flet-a-beginpmatrix-82-8-2-endpmatrix-find-the-entry-in-the-first%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      Hint Show that
      $$A^2=6A$$



      Note: You can show the stronger statement:
      $$begin{pmatrix} 8&2 \ -8&-2 end{pmatrix}begin{pmatrix} a&b \ -a&-b end{pmatrix}=6begin{pmatrix} a&b \ -a&-b end{pmatrix}$$
      but this is overkill.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
        $endgroup$
        – Mindlack
        Jan 6 at 0:25










      • $begingroup$
        Very nice indeed!
        $endgroup$
        – Mike
        Jan 6 at 0:33










      • $begingroup$
        Can you please explain it a little further how to proceed with this
        $endgroup$
        – DD90
        Jan 6 at 0:35






      • 1




        $begingroup$
        If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
        $endgroup$
        – Mindlack
        Jan 6 at 0:52










      • $begingroup$
        @DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
        $endgroup$
        – N. S.
        Jan 6 at 3:34
















      5












      $begingroup$

      Hint Show that
      $$A^2=6A$$



      Note: You can show the stronger statement:
      $$begin{pmatrix} 8&2 \ -8&-2 end{pmatrix}begin{pmatrix} a&b \ -a&-b end{pmatrix}=6begin{pmatrix} a&b \ -a&-b end{pmatrix}$$
      but this is overkill.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
        $endgroup$
        – Mindlack
        Jan 6 at 0:25










      • $begingroup$
        Very nice indeed!
        $endgroup$
        – Mike
        Jan 6 at 0:33










      • $begingroup$
        Can you please explain it a little further how to proceed with this
        $endgroup$
        – DD90
        Jan 6 at 0:35






      • 1




        $begingroup$
        If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
        $endgroup$
        – Mindlack
        Jan 6 at 0:52










      • $begingroup$
        @DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
        $endgroup$
        – N. S.
        Jan 6 at 3:34














      5












      5








      5





      $begingroup$

      Hint Show that
      $$A^2=6A$$



      Note: You can show the stronger statement:
      $$begin{pmatrix} 8&2 \ -8&-2 end{pmatrix}begin{pmatrix} a&b \ -a&-b end{pmatrix}=6begin{pmatrix} a&b \ -a&-b end{pmatrix}$$
      but this is overkill.






      share|cite|improve this answer









      $endgroup$



      Hint Show that
      $$A^2=6A$$



      Note: You can show the stronger statement:
      $$begin{pmatrix} 8&2 \ -8&-2 end{pmatrix}begin{pmatrix} a&b \ -a&-b end{pmatrix}=6begin{pmatrix} a&b \ -a&-b end{pmatrix}$$
      but this is overkill.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Jan 6 at 0:23









      N. S.N. S.

      103k6111208




      103k6111208












      • $begingroup$
        This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
        $endgroup$
        – Mindlack
        Jan 6 at 0:25










      • $begingroup$
        Very nice indeed!
        $endgroup$
        – Mike
        Jan 6 at 0:33










      • $begingroup$
        Can you please explain it a little further how to proceed with this
        $endgroup$
        – DD90
        Jan 6 at 0:35






      • 1




        $begingroup$
        If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
        $endgroup$
        – Mindlack
        Jan 6 at 0:52










      • $begingroup$
        @DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
        $endgroup$
        – N. S.
        Jan 6 at 3:34


















      • $begingroup$
        This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
        $endgroup$
        – Mindlack
        Jan 6 at 0:25










      • $begingroup$
        Very nice indeed!
        $endgroup$
        – Mike
        Jan 6 at 0:33










      • $begingroup$
        Can you please explain it a little further how to proceed with this
        $endgroup$
        – DD90
        Jan 6 at 0:35






      • 1




        $begingroup$
        If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
        $endgroup$
        – Mindlack
        Jan 6 at 0:52










      • $begingroup$
        @DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
        $endgroup$
        – N. S.
        Jan 6 at 3:34
















      $begingroup$
      This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
      $endgroup$
      – Mindlack
      Jan 6 at 0:25




      $begingroup$
      This is a cleaner and easier argument. Of course, it relies on the fact that the matrix $A$ has rank $1$.
      $endgroup$
      – Mindlack
      Jan 6 at 0:25












      $begingroup$
      Very nice indeed!
      $endgroup$
      – Mike
      Jan 6 at 0:33




      $begingroup$
      Very nice indeed!
      $endgroup$
      – Mike
      Jan 6 at 0:33












      $begingroup$
      Can you please explain it a little further how to proceed with this
      $endgroup$
      – DD90
      Jan 6 at 0:35




      $begingroup$
      Can you please explain it a little further how to proceed with this
      $endgroup$
      – DD90
      Jan 6 at 0:35




      1




      1




      $begingroup$
      If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
      $endgroup$
      – Mindlack
      Jan 6 at 0:52




      $begingroup$
      If $A^2=6A$, then $A^3=A^2A=6AA=6*6A=6^2A$. Moreover, $A^4=A^3A=6^2AA=6^2*6A=6^3A$, and so on...
      $endgroup$
      – Mindlack
      Jan 6 at 0:52












      $begingroup$
      @DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
      $endgroup$
      – N. S.
      Jan 6 at 3:34




      $begingroup$
      @DD90 $$A^3=A^2 cdot A=6A cdot A =6 A^2 = 6^2A \A^4=A^3 cdot A=6^2A cdot A =6^2 A^2 = 6^3A \...$$
      $endgroup$
      – N. S.
      Jan 6 at 3:34











      2












      $begingroup$

      By the Cayley-Hamilton theorem, $A^{2014}=aI+bA$ for some unknown coefficients $a$ and $b$. This equation is also satisfied by $A$’s eigenvalues, which generates the system of equations $a=0$, $a+6b=6^{2014}$, from which $b=6^{2013}$. The required entry of $A^{2014}$ is therefore $2cdot6^{2013}$.



      Note, too, that the eigenvalues of $A$ can be found by inspection. Its rows are obviously linearly dependent, so one of its eigenvalues is $0$. The other eigenvalue is then equal to $A$’s trace.






      share|cite|improve this answer











      $endgroup$


















        2












        $begingroup$

        By the Cayley-Hamilton theorem, $A^{2014}=aI+bA$ for some unknown coefficients $a$ and $b$. This equation is also satisfied by $A$’s eigenvalues, which generates the system of equations $a=0$, $a+6b=6^{2014}$, from which $b=6^{2013}$. The required entry of $A^{2014}$ is therefore $2cdot6^{2013}$.



        Note, too, that the eigenvalues of $A$ can be found by inspection. Its rows are obviously linearly dependent, so one of its eigenvalues is $0$. The other eigenvalue is then equal to $A$’s trace.






        share|cite|improve this answer











        $endgroup$
















          2












          2








          2





          $begingroup$

          By the Cayley-Hamilton theorem, $A^{2014}=aI+bA$ for some unknown coefficients $a$ and $b$. This equation is also satisfied by $A$’s eigenvalues, which generates the system of equations $a=0$, $a+6b=6^{2014}$, from which $b=6^{2013}$. The required entry of $A^{2014}$ is therefore $2cdot6^{2013}$.



          Note, too, that the eigenvalues of $A$ can be found by inspection. Its rows are obviously linearly dependent, so one of its eigenvalues is $0$. The other eigenvalue is then equal to $A$’s trace.






          share|cite|improve this answer











          $endgroup$



          By the Cayley-Hamilton theorem, $A^{2014}=aI+bA$ for some unknown coefficients $a$ and $b$. This equation is also satisfied by $A$’s eigenvalues, which generates the system of equations $a=0$, $a+6b=6^{2014}$, from which $b=6^{2013}$. The required entry of $A^{2014}$ is therefore $2cdot6^{2013}$.



          Note, too, that the eigenvalues of $A$ can be found by inspection. Its rows are obviously linearly dependent, so one of its eigenvalues is $0$. The other eigenvalue is then equal to $A$’s trace.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 6 at 1:08

























          answered Jan 6 at 1:02









          amdamd

          29.7k21050




          29.7k21050























              0












              $begingroup$

              Since $A$ is clearly rank-1 (the two columns are multiples), you can directly decompose it into the outer product of two vectors:
              $$A=begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}$$



              Which now immediately gives you
              $$A^{2014}=left(begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}right)^{2014}=begin{bmatrix}1\-1end{bmatrix}left(begin{bmatrix}8&2end{bmatrix}begin{bmatrix}1\-1end{bmatrix}right)^{2013}begin{bmatrix}8&2end{bmatrix}=begin{bmatrix}1\-1end{bmatrix}6^{2013}begin{bmatrix}8&2end{bmatrix}=6^{2013}A$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Since $A$ is clearly rank-1 (the two columns are multiples), you can directly decompose it into the outer product of two vectors:
                $$A=begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}$$



                Which now immediately gives you
                $$A^{2014}=left(begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}right)^{2014}=begin{bmatrix}1\-1end{bmatrix}left(begin{bmatrix}8&2end{bmatrix}begin{bmatrix}1\-1end{bmatrix}right)^{2013}begin{bmatrix}8&2end{bmatrix}=begin{bmatrix}1\-1end{bmatrix}6^{2013}begin{bmatrix}8&2end{bmatrix}=6^{2013}A$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Since $A$ is clearly rank-1 (the two columns are multiples), you can directly decompose it into the outer product of two vectors:
                  $$A=begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}$$



                  Which now immediately gives you
                  $$A^{2014}=left(begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}right)^{2014}=begin{bmatrix}1\-1end{bmatrix}left(begin{bmatrix}8&2end{bmatrix}begin{bmatrix}1\-1end{bmatrix}right)^{2013}begin{bmatrix}8&2end{bmatrix}=begin{bmatrix}1\-1end{bmatrix}6^{2013}begin{bmatrix}8&2end{bmatrix}=6^{2013}A$$






                  share|cite|improve this answer









                  $endgroup$



                  Since $A$ is clearly rank-1 (the two columns are multiples), you can directly decompose it into the outer product of two vectors:
                  $$A=begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}$$



                  Which now immediately gives you
                  $$A^{2014}=left(begin{bmatrix}1\-1end{bmatrix}begin{bmatrix}8&2end{bmatrix}right)^{2014}=begin{bmatrix}1\-1end{bmatrix}left(begin{bmatrix}8&2end{bmatrix}begin{bmatrix}1\-1end{bmatrix}right)^{2013}begin{bmatrix}8&2end{bmatrix}=begin{bmatrix}1\-1end{bmatrix}6^{2013}begin{bmatrix}8&2end{bmatrix}=6^{2013}A$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 6 at 3:26









                  obscuransobscurans

                  1,027311




                  1,027311






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063354%2flet-a-beginpmatrix-82-8-2-endpmatrix-find-the-entry-in-the-first%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                      Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                      A Topological Invariant for $pi_3(U(n))$