Evaluating the limit $lim_{x to infty}left(sqrt{x^4 -x^3+1}-sqrt{x^4+15x^2-5},right)$












-3














I wanna know how to do this limit



$lim_{x to infty}left(sqrt{x^4 -x^3+1}-sqrt{x^4+15x^2-5},right)$










share|cite|improve this question
























  • Try multiplying and dividing by the conjugate root to eliminate the roots.
    – D.B.
    Nov 22 '18 at 4:37










  • thats what i did, but i got stuck
    – Franco Cabrera
    Nov 22 '18 at 4:41










  • math.stackexchange.com/questions/2959619/…
    – lab bhattacharjee
    Nov 22 '18 at 4:41










  • Remember that intuitively, when you work with limits of polynomials, you can often just replace the polynomial with it's leading term and get the right answer. In this case you get $0$
    – Ovi
    Nov 22 '18 at 4:49
















-3














I wanna know how to do this limit



$lim_{x to infty}left(sqrt{x^4 -x^3+1}-sqrt{x^4+15x^2-5},right)$










share|cite|improve this question
























  • Try multiplying and dividing by the conjugate root to eliminate the roots.
    – D.B.
    Nov 22 '18 at 4:37










  • thats what i did, but i got stuck
    – Franco Cabrera
    Nov 22 '18 at 4:41










  • math.stackexchange.com/questions/2959619/…
    – lab bhattacharjee
    Nov 22 '18 at 4:41










  • Remember that intuitively, when you work with limits of polynomials, you can often just replace the polynomial with it's leading term and get the right answer. In this case you get $0$
    – Ovi
    Nov 22 '18 at 4:49














-3












-3








-3







I wanna know how to do this limit



$lim_{x to infty}left(sqrt{x^4 -x^3+1}-sqrt{x^4+15x^2-5},right)$










share|cite|improve this question















I wanna know how to do this limit



$lim_{x to infty}left(sqrt{x^4 -x^3+1}-sqrt{x^4+15x^2-5},right)$







calculus limits infinity






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 22 '18 at 4:37







Franco Cabrera

















asked Nov 22 '18 at 4:32









Franco CabreraFranco Cabrera

64




64












  • Try multiplying and dividing by the conjugate root to eliminate the roots.
    – D.B.
    Nov 22 '18 at 4:37










  • thats what i did, but i got stuck
    – Franco Cabrera
    Nov 22 '18 at 4:41










  • math.stackexchange.com/questions/2959619/…
    – lab bhattacharjee
    Nov 22 '18 at 4:41










  • Remember that intuitively, when you work with limits of polynomials, you can often just replace the polynomial with it's leading term and get the right answer. In this case you get $0$
    – Ovi
    Nov 22 '18 at 4:49


















  • Try multiplying and dividing by the conjugate root to eliminate the roots.
    – D.B.
    Nov 22 '18 at 4:37










  • thats what i did, but i got stuck
    – Franco Cabrera
    Nov 22 '18 at 4:41










  • math.stackexchange.com/questions/2959619/…
    – lab bhattacharjee
    Nov 22 '18 at 4:41










  • Remember that intuitively, when you work with limits of polynomials, you can often just replace the polynomial with it's leading term and get the right answer. In this case you get $0$
    – Ovi
    Nov 22 '18 at 4:49
















Try multiplying and dividing by the conjugate root to eliminate the roots.
– D.B.
Nov 22 '18 at 4:37




Try multiplying and dividing by the conjugate root to eliminate the roots.
– D.B.
Nov 22 '18 at 4:37












thats what i did, but i got stuck
– Franco Cabrera
Nov 22 '18 at 4:41




thats what i did, but i got stuck
– Franco Cabrera
Nov 22 '18 at 4:41












math.stackexchange.com/questions/2959619/…
– lab bhattacharjee
Nov 22 '18 at 4:41




math.stackexchange.com/questions/2959619/…
– lab bhattacharjee
Nov 22 '18 at 4:41












Remember that intuitively, when you work with limits of polynomials, you can often just replace the polynomial with it's leading term and get the right answer. In this case you get $0$
– Ovi
Nov 22 '18 at 4:49




Remember that intuitively, when you work with limits of polynomials, you can often just replace the polynomial with it's leading term and get the right answer. In this case you get $0$
– Ovi
Nov 22 '18 at 4:49










3 Answers
3






active

oldest

votes


















1














First of all, rationalise the expression by multiplying numerator and denominator by$displaystyle sqrt{x^{4} -x^{3} +1} + sqrt{x^{4} +15x^{2} -5}$
begin{equation*}
end{equation*}

We get
begin{gather*}
lim xrightarrow infty frac{-x^{3} -15x^{2} +6}{sqrt{x^{4} -x^{3} +1} + sqrt{x^{4} +15x^{2} -5}}\
end{gather*}

Divide numerator and denominator by $displaystyle x^{2}$
begin{equation*}
lim xrightarrow infty frac{-x-15+frac{6}{x^{2}}}{sqrt{1-frac{1}{x} +frac{1}{x^{4}}} +sqrt{1+frac{15}{x^{2}} -frac{5}{x^{4}}}}
end{equation*}



Clearly the given expression tends to$displaystyle -infty $ as $displaystyle xrightarrow infty $
begin{equation*}
end{equation*}






share|cite|improve this answer





























    0














    You should multiply by the conjugate of the expression, then proceed.



    begin{align}
    frac{left(sqrt{x^4 -x^3+1}-sqrt{x^4+15x^2-5},right)left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}{left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}\
    end{align}

    begin{align}
    frac{(x^4 -x^3+1)-(x^4+15x^2-5)}{left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}
    end{align}



    Operate and calculate the limit.






    share|cite|improve this answer























    • negative! that's cool!
      – Christopher Marley
      Nov 22 '18 at 4:52










    • What does that mean? Sorry I`m not a fully native english speaker so those two words in the same sentence make me confuse.
      – Alberto Torrejon Valenzuela
      Nov 22 '18 at 4:54










    • and then, should i evaluate de sign of de function to see the lateral limits?
      – Franco Cabrera
      Nov 22 '18 at 4:54










    • No need if you just want to give a result of the limit. If you want to study the function then I suppose you should
      – Alberto Torrejon Valenzuela
      Nov 22 '18 at 4:56










    • Alberto, despues de eso tendria que evaluar el signo de f? ver si los limites laterales son iguales y obtener su valor?
      – Franco Cabrera
      Nov 22 '18 at 4:56



















    -1














    Another manipulation:



    Let $a,b >0$, real.



    $a-b=(√a-√b)(√a+√b)$, then



    $√a-√b = dfrac{a-b}{√a+√b}.$



    $a: = (x^4-x^3+1)^{1/2},$
    $b=(x^4+15x^2-5)^{1/2}.$



    $small{f(x):=}$



    $small {=dfrac{-x^3-15x^2+6}{(x^4-x^3+1)^{1/2}+(x^4+15x^2-5)^{1/2}}}$



    Note : For large x (positive) the numerator is negative, the denominator positive: Increasing the denominator makes the fraction bigger.



    Hence



    $f(x) lt $



    $dfrac{-x^3+6}{(x^4+1)^{1/2}+(x^4+15x^2)^{1/2}} lt $



    $dfrac{-x^3+6}{√2x^2+√2x^2}=$



    $dfrac{-x^3+6}{(2√2)x^2}.$



    Take the limit.






    share|cite|improve this answer























      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008741%2fevaluating-the-limit-lim-x-to-infty-left-sqrtx4-x31-sqrtx415x2%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1














      First of all, rationalise the expression by multiplying numerator and denominator by$displaystyle sqrt{x^{4} -x^{3} +1} + sqrt{x^{4} +15x^{2} -5}$
      begin{equation*}
      end{equation*}

      We get
      begin{gather*}
      lim xrightarrow infty frac{-x^{3} -15x^{2} +6}{sqrt{x^{4} -x^{3} +1} + sqrt{x^{4} +15x^{2} -5}}\
      end{gather*}

      Divide numerator and denominator by $displaystyle x^{2}$
      begin{equation*}
      lim xrightarrow infty frac{-x-15+frac{6}{x^{2}}}{sqrt{1-frac{1}{x} +frac{1}{x^{4}}} +sqrt{1+frac{15}{x^{2}} -frac{5}{x^{4}}}}
      end{equation*}



      Clearly the given expression tends to$displaystyle -infty $ as $displaystyle xrightarrow infty $
      begin{equation*}
      end{equation*}






      share|cite|improve this answer


























        1














        First of all, rationalise the expression by multiplying numerator and denominator by$displaystyle sqrt{x^{4} -x^{3} +1} + sqrt{x^{4} +15x^{2} -5}$
        begin{equation*}
        end{equation*}

        We get
        begin{gather*}
        lim xrightarrow infty frac{-x^{3} -15x^{2} +6}{sqrt{x^{4} -x^{3} +1} + sqrt{x^{4} +15x^{2} -5}}\
        end{gather*}

        Divide numerator and denominator by $displaystyle x^{2}$
        begin{equation*}
        lim xrightarrow infty frac{-x-15+frac{6}{x^{2}}}{sqrt{1-frac{1}{x} +frac{1}{x^{4}}} +sqrt{1+frac{15}{x^{2}} -frac{5}{x^{4}}}}
        end{equation*}



        Clearly the given expression tends to$displaystyle -infty $ as $displaystyle xrightarrow infty $
        begin{equation*}
        end{equation*}






        share|cite|improve this answer
























          1












          1








          1






          First of all, rationalise the expression by multiplying numerator and denominator by$displaystyle sqrt{x^{4} -x^{3} +1} + sqrt{x^{4} +15x^{2} -5}$
          begin{equation*}
          end{equation*}

          We get
          begin{gather*}
          lim xrightarrow infty frac{-x^{3} -15x^{2} +6}{sqrt{x^{4} -x^{3} +1} + sqrt{x^{4} +15x^{2} -5}}\
          end{gather*}

          Divide numerator and denominator by $displaystyle x^{2}$
          begin{equation*}
          lim xrightarrow infty frac{-x-15+frac{6}{x^{2}}}{sqrt{1-frac{1}{x} +frac{1}{x^{4}}} +sqrt{1+frac{15}{x^{2}} -frac{5}{x^{4}}}}
          end{equation*}



          Clearly the given expression tends to$displaystyle -infty $ as $displaystyle xrightarrow infty $
          begin{equation*}
          end{equation*}






          share|cite|improve this answer












          First of all, rationalise the expression by multiplying numerator and denominator by$displaystyle sqrt{x^{4} -x^{3} +1} + sqrt{x^{4} +15x^{2} -5}$
          begin{equation*}
          end{equation*}

          We get
          begin{gather*}
          lim xrightarrow infty frac{-x^{3} -15x^{2} +6}{sqrt{x^{4} -x^{3} +1} + sqrt{x^{4} +15x^{2} -5}}\
          end{gather*}

          Divide numerator and denominator by $displaystyle x^{2}$
          begin{equation*}
          lim xrightarrow infty frac{-x-15+frac{6}{x^{2}}}{sqrt{1-frac{1}{x} +frac{1}{x^{4}}} +sqrt{1+frac{15}{x^{2}} -frac{5}{x^{4}}}}
          end{equation*}



          Clearly the given expression tends to$displaystyle -infty $ as $displaystyle xrightarrow infty $
          begin{equation*}
          end{equation*}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 22 '18 at 5:49









          Dikshit GautamDikshit Gautam

          795




          795























              0














              You should multiply by the conjugate of the expression, then proceed.



              begin{align}
              frac{left(sqrt{x^4 -x^3+1}-sqrt{x^4+15x^2-5},right)left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}{left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}\
              end{align}

              begin{align}
              frac{(x^4 -x^3+1)-(x^4+15x^2-5)}{left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}
              end{align}



              Operate and calculate the limit.






              share|cite|improve this answer























              • negative! that's cool!
                – Christopher Marley
                Nov 22 '18 at 4:52










              • What does that mean? Sorry I`m not a fully native english speaker so those two words in the same sentence make me confuse.
                – Alberto Torrejon Valenzuela
                Nov 22 '18 at 4:54










              • and then, should i evaluate de sign of de function to see the lateral limits?
                – Franco Cabrera
                Nov 22 '18 at 4:54










              • No need if you just want to give a result of the limit. If you want to study the function then I suppose you should
                – Alberto Torrejon Valenzuela
                Nov 22 '18 at 4:56










              • Alberto, despues de eso tendria que evaluar el signo de f? ver si los limites laterales son iguales y obtener su valor?
                – Franco Cabrera
                Nov 22 '18 at 4:56
















              0














              You should multiply by the conjugate of the expression, then proceed.



              begin{align}
              frac{left(sqrt{x^4 -x^3+1}-sqrt{x^4+15x^2-5},right)left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}{left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}\
              end{align}

              begin{align}
              frac{(x^4 -x^3+1)-(x^4+15x^2-5)}{left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}
              end{align}



              Operate and calculate the limit.






              share|cite|improve this answer























              • negative! that's cool!
                – Christopher Marley
                Nov 22 '18 at 4:52










              • What does that mean? Sorry I`m not a fully native english speaker so those two words in the same sentence make me confuse.
                – Alberto Torrejon Valenzuela
                Nov 22 '18 at 4:54










              • and then, should i evaluate de sign of de function to see the lateral limits?
                – Franco Cabrera
                Nov 22 '18 at 4:54










              • No need if you just want to give a result of the limit. If you want to study the function then I suppose you should
                – Alberto Torrejon Valenzuela
                Nov 22 '18 at 4:56










              • Alberto, despues de eso tendria que evaluar el signo de f? ver si los limites laterales son iguales y obtener su valor?
                – Franco Cabrera
                Nov 22 '18 at 4:56














              0












              0








              0






              You should multiply by the conjugate of the expression, then proceed.



              begin{align}
              frac{left(sqrt{x^4 -x^3+1}-sqrt{x^4+15x^2-5},right)left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}{left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}\
              end{align}

              begin{align}
              frac{(x^4 -x^3+1)-(x^4+15x^2-5)}{left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}
              end{align}



              Operate and calculate the limit.






              share|cite|improve this answer














              You should multiply by the conjugate of the expression, then proceed.



              begin{align}
              frac{left(sqrt{x^4 -x^3+1}-sqrt{x^4+15x^2-5},right)left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}{left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}\
              end{align}

              begin{align}
              frac{(x^4 -x^3+1)-(x^4+15x^2-5)}{left(sqrt{x^4 -x^3+1}+sqrt{x^4+15x^2-5},right)}
              end{align}



              Operate and calculate the limit.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Nov 22 '18 at 6:03









              b00n heT

              10.2k12234




              10.2k12234










              answered Nov 22 '18 at 4:48









              Alberto Torrejon ValenzuelaAlberto Torrejon Valenzuela

              276




              276












              • negative! that's cool!
                – Christopher Marley
                Nov 22 '18 at 4:52










              • What does that mean? Sorry I`m not a fully native english speaker so those two words in the same sentence make me confuse.
                – Alberto Torrejon Valenzuela
                Nov 22 '18 at 4:54










              • and then, should i evaluate de sign of de function to see the lateral limits?
                – Franco Cabrera
                Nov 22 '18 at 4:54










              • No need if you just want to give a result of the limit. If you want to study the function then I suppose you should
                – Alberto Torrejon Valenzuela
                Nov 22 '18 at 4:56










              • Alberto, despues de eso tendria que evaluar el signo de f? ver si los limites laterales son iguales y obtener su valor?
                – Franco Cabrera
                Nov 22 '18 at 4:56


















              • negative! that's cool!
                – Christopher Marley
                Nov 22 '18 at 4:52










              • What does that mean? Sorry I`m not a fully native english speaker so those two words in the same sentence make me confuse.
                – Alberto Torrejon Valenzuela
                Nov 22 '18 at 4:54










              • and then, should i evaluate de sign of de function to see the lateral limits?
                – Franco Cabrera
                Nov 22 '18 at 4:54










              • No need if you just want to give a result of the limit. If you want to study the function then I suppose you should
                – Alberto Torrejon Valenzuela
                Nov 22 '18 at 4:56










              • Alberto, despues de eso tendria que evaluar el signo de f? ver si los limites laterales son iguales y obtener su valor?
                – Franco Cabrera
                Nov 22 '18 at 4:56
















              negative! that's cool!
              – Christopher Marley
              Nov 22 '18 at 4:52




              negative! that's cool!
              – Christopher Marley
              Nov 22 '18 at 4:52












              What does that mean? Sorry I`m not a fully native english speaker so those two words in the same sentence make me confuse.
              – Alberto Torrejon Valenzuela
              Nov 22 '18 at 4:54




              What does that mean? Sorry I`m not a fully native english speaker so those two words in the same sentence make me confuse.
              – Alberto Torrejon Valenzuela
              Nov 22 '18 at 4:54












              and then, should i evaluate de sign of de function to see the lateral limits?
              – Franco Cabrera
              Nov 22 '18 at 4:54




              and then, should i evaluate de sign of de function to see the lateral limits?
              – Franco Cabrera
              Nov 22 '18 at 4:54












              No need if you just want to give a result of the limit. If you want to study the function then I suppose you should
              – Alberto Torrejon Valenzuela
              Nov 22 '18 at 4:56




              No need if you just want to give a result of the limit. If you want to study the function then I suppose you should
              – Alberto Torrejon Valenzuela
              Nov 22 '18 at 4:56












              Alberto, despues de eso tendria que evaluar el signo de f? ver si los limites laterales son iguales y obtener su valor?
              – Franco Cabrera
              Nov 22 '18 at 4:56




              Alberto, despues de eso tendria que evaluar el signo de f? ver si los limites laterales son iguales y obtener su valor?
              – Franco Cabrera
              Nov 22 '18 at 4:56











              -1














              Another manipulation:



              Let $a,b >0$, real.



              $a-b=(√a-√b)(√a+√b)$, then



              $√a-√b = dfrac{a-b}{√a+√b}.$



              $a: = (x^4-x^3+1)^{1/2},$
              $b=(x^4+15x^2-5)^{1/2}.$



              $small{f(x):=}$



              $small {=dfrac{-x^3-15x^2+6}{(x^4-x^3+1)^{1/2}+(x^4+15x^2-5)^{1/2}}}$



              Note : For large x (positive) the numerator is negative, the denominator positive: Increasing the denominator makes the fraction bigger.



              Hence



              $f(x) lt $



              $dfrac{-x^3+6}{(x^4+1)^{1/2}+(x^4+15x^2)^{1/2}} lt $



              $dfrac{-x^3+6}{√2x^2+√2x^2}=$



              $dfrac{-x^3+6}{(2√2)x^2}.$



              Take the limit.






              share|cite|improve this answer




























                -1














                Another manipulation:



                Let $a,b >0$, real.



                $a-b=(√a-√b)(√a+√b)$, then



                $√a-√b = dfrac{a-b}{√a+√b}.$



                $a: = (x^4-x^3+1)^{1/2},$
                $b=(x^4+15x^2-5)^{1/2}.$



                $small{f(x):=}$



                $small {=dfrac{-x^3-15x^2+6}{(x^4-x^3+1)^{1/2}+(x^4+15x^2-5)^{1/2}}}$



                Note : For large x (positive) the numerator is negative, the denominator positive: Increasing the denominator makes the fraction bigger.



                Hence



                $f(x) lt $



                $dfrac{-x^3+6}{(x^4+1)^{1/2}+(x^4+15x^2)^{1/2}} lt $



                $dfrac{-x^3+6}{√2x^2+√2x^2}=$



                $dfrac{-x^3+6}{(2√2)x^2}.$



                Take the limit.






                share|cite|improve this answer


























                  -1












                  -1








                  -1






                  Another manipulation:



                  Let $a,b >0$, real.



                  $a-b=(√a-√b)(√a+√b)$, then



                  $√a-√b = dfrac{a-b}{√a+√b}.$



                  $a: = (x^4-x^3+1)^{1/2},$
                  $b=(x^4+15x^2-5)^{1/2}.$



                  $small{f(x):=}$



                  $small {=dfrac{-x^3-15x^2+6}{(x^4-x^3+1)^{1/2}+(x^4+15x^2-5)^{1/2}}}$



                  Note : For large x (positive) the numerator is negative, the denominator positive: Increasing the denominator makes the fraction bigger.



                  Hence



                  $f(x) lt $



                  $dfrac{-x^3+6}{(x^4+1)^{1/2}+(x^4+15x^2)^{1/2}} lt $



                  $dfrac{-x^3+6}{√2x^2+√2x^2}=$



                  $dfrac{-x^3+6}{(2√2)x^2}.$



                  Take the limit.






                  share|cite|improve this answer














                  Another manipulation:



                  Let $a,b >0$, real.



                  $a-b=(√a-√b)(√a+√b)$, then



                  $√a-√b = dfrac{a-b}{√a+√b}.$



                  $a: = (x^4-x^3+1)^{1/2},$
                  $b=(x^4+15x^2-5)^{1/2}.$



                  $small{f(x):=}$



                  $small {=dfrac{-x^3-15x^2+6}{(x^4-x^3+1)^{1/2}+(x^4+15x^2-5)^{1/2}}}$



                  Note : For large x (positive) the numerator is negative, the denominator positive: Increasing the denominator makes the fraction bigger.



                  Hence



                  $f(x) lt $



                  $dfrac{-x^3+6}{(x^4+1)^{1/2}+(x^4+15x^2)^{1/2}} lt $



                  $dfrac{-x^3+6}{√2x^2+√2x^2}=$



                  $dfrac{-x^3+6}{(2√2)x^2}.$



                  Take the limit.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 22 '18 at 9:44

























                  answered Nov 22 '18 at 9:34









                  Peter SzilasPeter Szilas

                  10.8k2720




                  10.8k2720






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3008741%2fevaluating-the-limit-lim-x-to-infty-left-sqrtx4-x31-sqrtx415x2%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith