How to correctly use KKT conditions?












0












$begingroup$


Let $Ain mathbb{R}^{ntimes n}$ be a positive definite matrix. Then find



begin{equation}
max_{|x_i|leq1}x^TAx
end{equation}



Here I want to use KKT conditions to show that $|x_i|=1$ is an optimal solution.



Derivative of objective function $nabla f(x^*)=2Ax$ and derivative of inequality constraint function is $sum_{i=1}^{n}mu_inabla g_i(x^*)=[pmmu_1 quad pmmu_2 quad cdots quad pmmu_n]'$, so KKT conditions are



begin{equation}
2Ax-[pmmu_1 quad pmmu_2 quad cdots quad pmmu_n]'=0;
end{equation}

begin{equation}
mu_igeq0;
end{equation}

begin{equation}
mu_ig_i(x^*)=0;
end{equation}

So if $2Ax$ is non-zero element-wise, then $mu_i neq0$, thus $g_i(x^*)=0quad$ i.e. $|x_i|=1$ is optimal solution.



But how to show that $2Ax$ is indeed non-zero element-wise?










share|cite|improve this question











$endgroup$












  • $begingroup$
    If $(Ax)_i = 0$, you do not need $|x_i|=1$. What makes you think $|x_i|=1$ for all $i$?
    $endgroup$
    – LinAlg
    Jan 7 at 23:11










  • $begingroup$
    I did a simulation that shows optimal solution is always at $|x_i|=1$. Even though, $(Ax)_i=0$ for some $x$, you can change signs of some $x_i$ to get $(Ax)_ineq 0$ for all $i$.
    $endgroup$
    – Lee
    Jan 8 at 1:22










  • $begingroup$
    If $A=begin{bmatrix}2 & -1 & -1\-1 & 2 &1 \-1 & 1 &2end{bmatrix}>0$, then $Ax=[0 quad 2 quad 2]'$ for $x=[1 quad 1quad 1]'$, but $Ax=[4quad-4quad-4]'$ for $x=[1 quad -1quad -1]'$.
    $endgroup$
    – Lee
    Jan 8 at 1:31










  • $begingroup$
    are you saying the KKT conditions are not sufficient for optimality?
    $endgroup$
    – LinAlg
    Jan 8 at 1:41










  • $begingroup$
    no, I am saying that to use KKT conditions, I have to show that there exist $xin{pm1}^n$ such that $(Ax)_ineq0$ for all $i$. But I don't know how. I want to show that $mu_i>0$ for all $i$
    $endgroup$
    – Lee
    Jan 8 at 1:46


















0












$begingroup$


Let $Ain mathbb{R}^{ntimes n}$ be a positive definite matrix. Then find



begin{equation}
max_{|x_i|leq1}x^TAx
end{equation}



Here I want to use KKT conditions to show that $|x_i|=1$ is an optimal solution.



Derivative of objective function $nabla f(x^*)=2Ax$ and derivative of inequality constraint function is $sum_{i=1}^{n}mu_inabla g_i(x^*)=[pmmu_1 quad pmmu_2 quad cdots quad pmmu_n]'$, so KKT conditions are



begin{equation}
2Ax-[pmmu_1 quad pmmu_2 quad cdots quad pmmu_n]'=0;
end{equation}

begin{equation}
mu_igeq0;
end{equation}

begin{equation}
mu_ig_i(x^*)=0;
end{equation}

So if $2Ax$ is non-zero element-wise, then $mu_i neq0$, thus $g_i(x^*)=0quad$ i.e. $|x_i|=1$ is optimal solution.



But how to show that $2Ax$ is indeed non-zero element-wise?










share|cite|improve this question











$endgroup$












  • $begingroup$
    If $(Ax)_i = 0$, you do not need $|x_i|=1$. What makes you think $|x_i|=1$ for all $i$?
    $endgroup$
    – LinAlg
    Jan 7 at 23:11










  • $begingroup$
    I did a simulation that shows optimal solution is always at $|x_i|=1$. Even though, $(Ax)_i=0$ for some $x$, you can change signs of some $x_i$ to get $(Ax)_ineq 0$ for all $i$.
    $endgroup$
    – Lee
    Jan 8 at 1:22










  • $begingroup$
    If $A=begin{bmatrix}2 & -1 & -1\-1 & 2 &1 \-1 & 1 &2end{bmatrix}>0$, then $Ax=[0 quad 2 quad 2]'$ for $x=[1 quad 1quad 1]'$, but $Ax=[4quad-4quad-4]'$ for $x=[1 quad -1quad -1]'$.
    $endgroup$
    – Lee
    Jan 8 at 1:31










  • $begingroup$
    are you saying the KKT conditions are not sufficient for optimality?
    $endgroup$
    – LinAlg
    Jan 8 at 1:41










  • $begingroup$
    no, I am saying that to use KKT conditions, I have to show that there exist $xin{pm1}^n$ such that $(Ax)_ineq0$ for all $i$. But I don't know how. I want to show that $mu_i>0$ for all $i$
    $endgroup$
    – Lee
    Jan 8 at 1:46
















0












0








0





$begingroup$


Let $Ain mathbb{R}^{ntimes n}$ be a positive definite matrix. Then find



begin{equation}
max_{|x_i|leq1}x^TAx
end{equation}



Here I want to use KKT conditions to show that $|x_i|=1$ is an optimal solution.



Derivative of objective function $nabla f(x^*)=2Ax$ and derivative of inequality constraint function is $sum_{i=1}^{n}mu_inabla g_i(x^*)=[pmmu_1 quad pmmu_2 quad cdots quad pmmu_n]'$, so KKT conditions are



begin{equation}
2Ax-[pmmu_1 quad pmmu_2 quad cdots quad pmmu_n]'=0;
end{equation}

begin{equation}
mu_igeq0;
end{equation}

begin{equation}
mu_ig_i(x^*)=0;
end{equation}

So if $2Ax$ is non-zero element-wise, then $mu_i neq0$, thus $g_i(x^*)=0quad$ i.e. $|x_i|=1$ is optimal solution.



But how to show that $2Ax$ is indeed non-zero element-wise?










share|cite|improve this question











$endgroup$




Let $Ain mathbb{R}^{ntimes n}$ be a positive definite matrix. Then find



begin{equation}
max_{|x_i|leq1}x^TAx
end{equation}



Here I want to use KKT conditions to show that $|x_i|=1$ is an optimal solution.



Derivative of objective function $nabla f(x^*)=2Ax$ and derivative of inequality constraint function is $sum_{i=1}^{n}mu_inabla g_i(x^*)=[pmmu_1 quad pmmu_2 quad cdots quad pmmu_n]'$, so KKT conditions are



begin{equation}
2Ax-[pmmu_1 quad pmmu_2 quad cdots quad pmmu_n]'=0;
end{equation}

begin{equation}
mu_igeq0;
end{equation}

begin{equation}
mu_ig_i(x^*)=0;
end{equation}

So if $2Ax$ is non-zero element-wise, then $mu_i neq0$, thus $g_i(x^*)=0quad$ i.e. $|x_i|=1$ is optimal solution.



But how to show that $2Ax$ is indeed non-zero element-wise?







linear-algebra optimization karush-kuhn-tucker






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 3:06









LinAlg

9,0111521




9,0111521










asked Jan 7 at 6:14









LeeLee

328111




328111












  • $begingroup$
    If $(Ax)_i = 0$, you do not need $|x_i|=1$. What makes you think $|x_i|=1$ for all $i$?
    $endgroup$
    – LinAlg
    Jan 7 at 23:11










  • $begingroup$
    I did a simulation that shows optimal solution is always at $|x_i|=1$. Even though, $(Ax)_i=0$ for some $x$, you can change signs of some $x_i$ to get $(Ax)_ineq 0$ for all $i$.
    $endgroup$
    – Lee
    Jan 8 at 1:22










  • $begingroup$
    If $A=begin{bmatrix}2 & -1 & -1\-1 & 2 &1 \-1 & 1 &2end{bmatrix}>0$, then $Ax=[0 quad 2 quad 2]'$ for $x=[1 quad 1quad 1]'$, but $Ax=[4quad-4quad-4]'$ for $x=[1 quad -1quad -1]'$.
    $endgroup$
    – Lee
    Jan 8 at 1:31










  • $begingroup$
    are you saying the KKT conditions are not sufficient for optimality?
    $endgroup$
    – LinAlg
    Jan 8 at 1:41










  • $begingroup$
    no, I am saying that to use KKT conditions, I have to show that there exist $xin{pm1}^n$ such that $(Ax)_ineq0$ for all $i$. But I don't know how. I want to show that $mu_i>0$ for all $i$
    $endgroup$
    – Lee
    Jan 8 at 1:46




















  • $begingroup$
    If $(Ax)_i = 0$, you do not need $|x_i|=1$. What makes you think $|x_i|=1$ for all $i$?
    $endgroup$
    – LinAlg
    Jan 7 at 23:11










  • $begingroup$
    I did a simulation that shows optimal solution is always at $|x_i|=1$. Even though, $(Ax)_i=0$ for some $x$, you can change signs of some $x_i$ to get $(Ax)_ineq 0$ for all $i$.
    $endgroup$
    – Lee
    Jan 8 at 1:22










  • $begingroup$
    If $A=begin{bmatrix}2 & -1 & -1\-1 & 2 &1 \-1 & 1 &2end{bmatrix}>0$, then $Ax=[0 quad 2 quad 2]'$ for $x=[1 quad 1quad 1]'$, but $Ax=[4quad-4quad-4]'$ for $x=[1 quad -1quad -1]'$.
    $endgroup$
    – Lee
    Jan 8 at 1:31










  • $begingroup$
    are you saying the KKT conditions are not sufficient for optimality?
    $endgroup$
    – LinAlg
    Jan 8 at 1:41










  • $begingroup$
    no, I am saying that to use KKT conditions, I have to show that there exist $xin{pm1}^n$ such that $(Ax)_ineq0$ for all $i$. But I don't know how. I want to show that $mu_i>0$ for all $i$
    $endgroup$
    – Lee
    Jan 8 at 1:46


















$begingroup$
If $(Ax)_i = 0$, you do not need $|x_i|=1$. What makes you think $|x_i|=1$ for all $i$?
$endgroup$
– LinAlg
Jan 7 at 23:11




$begingroup$
If $(Ax)_i = 0$, you do not need $|x_i|=1$. What makes you think $|x_i|=1$ for all $i$?
$endgroup$
– LinAlg
Jan 7 at 23:11












$begingroup$
I did a simulation that shows optimal solution is always at $|x_i|=1$. Even though, $(Ax)_i=0$ for some $x$, you can change signs of some $x_i$ to get $(Ax)_ineq 0$ for all $i$.
$endgroup$
– Lee
Jan 8 at 1:22




$begingroup$
I did a simulation that shows optimal solution is always at $|x_i|=1$. Even though, $(Ax)_i=0$ for some $x$, you can change signs of some $x_i$ to get $(Ax)_ineq 0$ for all $i$.
$endgroup$
– Lee
Jan 8 at 1:22












$begingroup$
If $A=begin{bmatrix}2 & -1 & -1\-1 & 2 &1 \-1 & 1 &2end{bmatrix}>0$, then $Ax=[0 quad 2 quad 2]'$ for $x=[1 quad 1quad 1]'$, but $Ax=[4quad-4quad-4]'$ for $x=[1 quad -1quad -1]'$.
$endgroup$
– Lee
Jan 8 at 1:31




$begingroup$
If $A=begin{bmatrix}2 & -1 & -1\-1 & 2 &1 \-1 & 1 &2end{bmatrix}>0$, then $Ax=[0 quad 2 quad 2]'$ for $x=[1 quad 1quad 1]'$, but $Ax=[4quad-4quad-4]'$ for $x=[1 quad -1quad -1]'$.
$endgroup$
– Lee
Jan 8 at 1:31












$begingroup$
are you saying the KKT conditions are not sufficient for optimality?
$endgroup$
– LinAlg
Jan 8 at 1:41




$begingroup$
are you saying the KKT conditions are not sufficient for optimality?
$endgroup$
– LinAlg
Jan 8 at 1:41












$begingroup$
no, I am saying that to use KKT conditions, I have to show that there exist $xin{pm1}^n$ such that $(Ax)_ineq0$ for all $i$. But I don't know how. I want to show that $mu_i>0$ for all $i$
$endgroup$
– Lee
Jan 8 at 1:46






$begingroup$
no, I am saying that to use KKT conditions, I have to show that there exist $xin{pm1}^n$ such that $(Ax)_ineq0$ for all $i$. But I don't know how. I want to show that $mu_i>0$ for all $i$
$endgroup$
– Lee
Jan 8 at 1:46












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064710%2fhow-to-correctly-use-kkt-conditions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064710%2fhow-to-correctly-use-kkt-conditions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

Npm cannot find a required file even through it is in the searched directory