How to take every third element in a series?
$begingroup$
$sum_{n=1}^infty frac{1}{n^2} = frac{1}{1^2} + frac{1}{2^2} + frac{1}{3^2} + cdots = 1.644934$ or $frac{pi^2}{6}$
What if we take every 3rd term and add them up?
A = $ frac{1}{3^2} + frac{1}{6^2} + frac{1}{9^2} + cdots = ??$
How to take every 3rd-1 term and add them up?
B = $ frac{1}{2^2} + frac{1}{5^2} + frac{1}{8^2} + cdots = ??$
How to take every 3rd-2 term and add them up?
C = $ frac{1}{1^2} + frac{1}{4^2} + frac{1}{7^2} + cdots = ??$
I am not sure how to adapt Eulers methods as he used the power series of sin for his arguments: https://en.wikipedia.org/wiki/Basel_problem
power-series
$endgroup$
add a comment |
$begingroup$
$sum_{n=1}^infty frac{1}{n^2} = frac{1}{1^2} + frac{1}{2^2} + frac{1}{3^2} + cdots = 1.644934$ or $frac{pi^2}{6}$
What if we take every 3rd term and add them up?
A = $ frac{1}{3^2} + frac{1}{6^2} + frac{1}{9^2} + cdots = ??$
How to take every 3rd-1 term and add them up?
B = $ frac{1}{2^2} + frac{1}{5^2} + frac{1}{8^2} + cdots = ??$
How to take every 3rd-2 term and add them up?
C = $ frac{1}{1^2} + frac{1}{4^2} + frac{1}{7^2} + cdots = ??$
I am not sure how to adapt Eulers methods as he used the power series of sin for his arguments: https://en.wikipedia.org/wiki/Basel_problem
power-series
$endgroup$
1
$begingroup$
The first sum you mentioned is $frac{1}{9}$ of the initial sum.
$endgroup$
– Peter
Jan 3 at 16:26
$begingroup$
The first sum can be rewritten as$$frac 19+frac 1{36}+cdots=frac 19left[1+frac 14+frac 19+cdotsright]color{blue}{=frac 19zeta(2)}$$
$endgroup$
– Frank W.
Jan 3 at 16:30
$begingroup$
If I may, but what is this problem for? When would you ever need to calculate each sum?
$endgroup$
– Frank W.
Jan 3 at 16:31
$begingroup$
@Peter that means that the other two sums must be different. as if they were the same the total would be $frac{3}{9}$ the initial sum.
$endgroup$
– Dale
Jan 3 at 16:38
$begingroup$
@Dale Peter said the first sum
$endgroup$
– Frank W.
Jan 3 at 16:43
add a comment |
$begingroup$
$sum_{n=1}^infty frac{1}{n^2} = frac{1}{1^2} + frac{1}{2^2} + frac{1}{3^2} + cdots = 1.644934$ or $frac{pi^2}{6}$
What if we take every 3rd term and add them up?
A = $ frac{1}{3^2} + frac{1}{6^2} + frac{1}{9^2} + cdots = ??$
How to take every 3rd-1 term and add them up?
B = $ frac{1}{2^2} + frac{1}{5^2} + frac{1}{8^2} + cdots = ??$
How to take every 3rd-2 term and add them up?
C = $ frac{1}{1^2} + frac{1}{4^2} + frac{1}{7^2} + cdots = ??$
I am not sure how to adapt Eulers methods as he used the power series of sin for his arguments: https://en.wikipedia.org/wiki/Basel_problem
power-series
$endgroup$
$sum_{n=1}^infty frac{1}{n^2} = frac{1}{1^2} + frac{1}{2^2} + frac{1}{3^2} + cdots = 1.644934$ or $frac{pi^2}{6}$
What if we take every 3rd term and add them up?
A = $ frac{1}{3^2} + frac{1}{6^2} + frac{1}{9^2} + cdots = ??$
How to take every 3rd-1 term and add them up?
B = $ frac{1}{2^2} + frac{1}{5^2} + frac{1}{8^2} + cdots = ??$
How to take every 3rd-2 term and add them up?
C = $ frac{1}{1^2} + frac{1}{4^2} + frac{1}{7^2} + cdots = ??$
I am not sure how to adapt Eulers methods as he used the power series of sin for his arguments: https://en.wikipedia.org/wiki/Basel_problem
power-series
power-series
edited Jan 13 at 19:36
Dale
asked Jan 3 at 16:25
DaleDale
1,1801334
1,1801334
1
$begingroup$
The first sum you mentioned is $frac{1}{9}$ of the initial sum.
$endgroup$
– Peter
Jan 3 at 16:26
$begingroup$
The first sum can be rewritten as$$frac 19+frac 1{36}+cdots=frac 19left[1+frac 14+frac 19+cdotsright]color{blue}{=frac 19zeta(2)}$$
$endgroup$
– Frank W.
Jan 3 at 16:30
$begingroup$
If I may, but what is this problem for? When would you ever need to calculate each sum?
$endgroup$
– Frank W.
Jan 3 at 16:31
$begingroup$
@Peter that means that the other two sums must be different. as if they were the same the total would be $frac{3}{9}$ the initial sum.
$endgroup$
– Dale
Jan 3 at 16:38
$begingroup$
@Dale Peter said the first sum
$endgroup$
– Frank W.
Jan 3 at 16:43
add a comment |
1
$begingroup$
The first sum you mentioned is $frac{1}{9}$ of the initial sum.
$endgroup$
– Peter
Jan 3 at 16:26
$begingroup$
The first sum can be rewritten as$$frac 19+frac 1{36}+cdots=frac 19left[1+frac 14+frac 19+cdotsright]color{blue}{=frac 19zeta(2)}$$
$endgroup$
– Frank W.
Jan 3 at 16:30
$begingroup$
If I may, but what is this problem for? When would you ever need to calculate each sum?
$endgroup$
– Frank W.
Jan 3 at 16:31
$begingroup$
@Peter that means that the other two sums must be different. as if they were the same the total would be $frac{3}{9}$ the initial sum.
$endgroup$
– Dale
Jan 3 at 16:38
$begingroup$
@Dale Peter said the first sum
$endgroup$
– Frank W.
Jan 3 at 16:43
1
1
$begingroup$
The first sum you mentioned is $frac{1}{9}$ of the initial sum.
$endgroup$
– Peter
Jan 3 at 16:26
$begingroup$
The first sum you mentioned is $frac{1}{9}$ of the initial sum.
$endgroup$
– Peter
Jan 3 at 16:26
$begingroup$
The first sum can be rewritten as$$frac 19+frac 1{36}+cdots=frac 19left[1+frac 14+frac 19+cdotsright]color{blue}{=frac 19zeta(2)}$$
$endgroup$
– Frank W.
Jan 3 at 16:30
$begingroup$
The first sum can be rewritten as$$frac 19+frac 1{36}+cdots=frac 19left[1+frac 14+frac 19+cdotsright]color{blue}{=frac 19zeta(2)}$$
$endgroup$
– Frank W.
Jan 3 at 16:30
$begingroup$
If I may, but what is this problem for? When would you ever need to calculate each sum?
$endgroup$
– Frank W.
Jan 3 at 16:31
$begingroup$
If I may, but what is this problem for? When would you ever need to calculate each sum?
$endgroup$
– Frank W.
Jan 3 at 16:31
$begingroup$
@Peter that means that the other two sums must be different. as if they were the same the total would be $frac{3}{9}$ the initial sum.
$endgroup$
– Dale
Jan 3 at 16:38
$begingroup$
@Peter that means that the other two sums must be different. as if they were the same the total would be $frac{3}{9}$ the initial sum.
$endgroup$
– Dale
Jan 3 at 16:38
$begingroup$
@Dale Peter said the first sum
$endgroup$
– Frank W.
Jan 3 at 16:43
$begingroup$
@Dale Peter said the first sum
$endgroup$
– Frank W.
Jan 3 at 16:43
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Note that we have
$$psi'(z)=sum_{n=0}^infty frac{1}{(n+z)^2}$$
where $psi'(z)$ is the derivative of the digamma function. Hence, we can write
$$sum_{n=0}^infty frac{1}{(3n+1)^2}=frac19 psi'(1/3)$$
and
$$sum_{n=0}^infty frac{1}{(3n+2)^2}=frac19 psi'(2/3)$$
Interestingly, since we have
$$sum_{n=0}^infty left(frac1{(3n+3)^2}+frac1{(3n+2)^2}+frac1{(3n+1)^2}right)=frac{pi^2}{6}$$
we find that
$$psi'(1/3)+psi'(2/3) = 4pi^2/3$$
$endgroup$
$begingroup$
Why does one psi lack a '
$endgroup$
– Dale
Jan 13 at 18:13
$begingroup$
@dale That ommission is an obvious typographical error. I've edited accordingly.
$endgroup$
– Mark Viola
Jan 13 at 18:59
$begingroup$
Yes, at least one of us. Note that $sum_{n=0}^infty left(frac1{(3n+3)^2}+frac1{(3n+2)^2}+frac1{(3n+1)^2}right)=frac{pi^2}{6}$ and hence $$frac19(psi'(1/3)+psi'(2/3))=frac{pi^2}{6}-frac{pi^2}{54}=frac{8pi^2}{54}=frac19left(frac{4pi^2}{3}right)$$Now multiply by $9$.
$endgroup$
– Mark Viola
Jan 13 at 19:29
add a comment |
$begingroup$
As a complement to Mark's answer,
$$sum_{ngeq 0}frac{1}{(3n+1)^2}=-int_{0}^{1}sum_{ngeq 0} x^{3n}log(x),dx=int_{0}^{1}frac{-log x}{1-x^3},dx $$
(and similarly $sum_{ngeq 0}frac{1}{(3n+2)^2}$) can be expressed in terms of dilogarithms, since
$$ int_{0}^{1}frac{-log x}{1-a x}=frac{text{Li}_2(a)}{a} $$
for any $|a|leq 1$, with $text{Li}_2(a)=sum_{ngeq 1}frac{a^n}{n^2}$. This is equivalent to stating that $psi'left(frac{1}{3}right)$ and $psi'left(frac{2}{3}right)$ can be computed through the discrete Fourier transform. It is worth noticing that
$$text{Re},text{Li}_2(e^{itheta})=sum_{ngeq 1}frac{cos(ntheta)}{n^2} $$
is a continuous and piecewise-parabolic function, as the formal primitive of the sawtooth wave. On the contrary, $text{Im},text{Li}_2(e^{itheta})$ does not have a nice closed form, in general. Ref.: https://en.wikipedia.org/wiki/Spence%27s_function
$endgroup$
add a comment |
$begingroup$
Polylogarithms
A useful formula that can be applied here is
$$
frac13sum_{k=0}^2e^{2pi ijk/3}=[3mid j]tag1
$$
So
$$
begin{align}newcommand{Li}{operatorname{Li}}
sum_{j=0}^inftyfrac1{(3j+1)^2}
&=frac13sum_{k=0}^2sum_{j=1}^infty e^{2pi i(j-1)k/3}frac1{j^2}\
&=frac13left(frac{pi^2}6+e^{-2pi i/3}Li_2left(e^{2pi i/3}right)+e^{2pi i/3}Li_2left(e^{-2pi i/3}right)right)tag2
end{align}
$$
Mathematica gives $1.12173301393634378687$ usingN[1/3(Pi^2/6 + Exp[-2Pi I/3]PolyLog[2,Exp[2Pi I/3]]+
Exp[2Pi I/3] PolyLog[2,Exp[-2Pi I/3]]),20]
Extended Harmonic Numbers
Another approach is to use the Extended Harmonic Numbers.
$$
H(x)=sum_{k=1}^inftyleft(frac1k-frac1{k+x}right)tag3
$$
where
$$
H'(x)=sum_{k=1}^inftyfrac1{(k+x)^2}tag5
$$
Giving
$$
frac19H'!left(-frac23right)=sum_{k=0}^inftyfrac1{(3k+1)^2}tag6
$$
Mathematica gives $1.1217330139363437869$ usingN[1/9HarmonicNumber'[-2/3],20]
Euler-Maclaurin Sum Formula
Although it does not give a closed form, the Euler-Maclaurin Sum Formula allows us to accelerate the computation of the sum.
$$
begin{align}
sum_{k=0}^nfrac1{(3k+1)^2}
&sim C-frac1{3(3n+1)}+frac1{2(3n+1)^2}-frac1{2(3n+1)^3}+frac9{10(3n+1)^5}\
&-frac{81}{14(3n+1)^7}+frac{729}{10(3n+1)^9}-frac{32805}{22(3n+1)^{11}}tag7
end{align}
$$
Using $n=100$ in $(7)$, we get
$$
sum_{k=0}^inftyfrac1{(3k+1)^2}=1.1217330139363437868657782tag8
$$
$endgroup$
add a comment |
$begingroup$
KM101 deleted his hint... not sure why.
$frac{1}{3^2}+frac{1}{6^2}+frac{1}{9^2}+dots=frac{1}{3^2 1^2}+frac{1}{3^2 2^2}+frac{1}{3^2 3^3}+dots=frac{1}{9}(frac{1}{1^2}+frac{1}{2^2}+frac{1}{3^2}+dots)= frac{pi^2}{54}$
$frac{1}{2^2}+frac{1}{5^2}+frac{1}{8^2}+dots=frac{1}{2^2 1^2}+frac{1}{3^2?? 1^2}+frac{1}{3^2 ??1^2}$
$endgroup$
1
$begingroup$
How does this answer the OP's question?
$endgroup$
– Mark Viola
Jan 3 at 20:24
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060742%2fhow-to-take-every-third-element-in-a-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that we have
$$psi'(z)=sum_{n=0}^infty frac{1}{(n+z)^2}$$
where $psi'(z)$ is the derivative of the digamma function. Hence, we can write
$$sum_{n=0}^infty frac{1}{(3n+1)^2}=frac19 psi'(1/3)$$
and
$$sum_{n=0}^infty frac{1}{(3n+2)^2}=frac19 psi'(2/3)$$
Interestingly, since we have
$$sum_{n=0}^infty left(frac1{(3n+3)^2}+frac1{(3n+2)^2}+frac1{(3n+1)^2}right)=frac{pi^2}{6}$$
we find that
$$psi'(1/3)+psi'(2/3) = 4pi^2/3$$
$endgroup$
$begingroup$
Why does one psi lack a '
$endgroup$
– Dale
Jan 13 at 18:13
$begingroup$
@dale That ommission is an obvious typographical error. I've edited accordingly.
$endgroup$
– Mark Viola
Jan 13 at 18:59
$begingroup$
Yes, at least one of us. Note that $sum_{n=0}^infty left(frac1{(3n+3)^2}+frac1{(3n+2)^2}+frac1{(3n+1)^2}right)=frac{pi^2}{6}$ and hence $$frac19(psi'(1/3)+psi'(2/3))=frac{pi^2}{6}-frac{pi^2}{54}=frac{8pi^2}{54}=frac19left(frac{4pi^2}{3}right)$$Now multiply by $9$.
$endgroup$
– Mark Viola
Jan 13 at 19:29
add a comment |
$begingroup$
Note that we have
$$psi'(z)=sum_{n=0}^infty frac{1}{(n+z)^2}$$
where $psi'(z)$ is the derivative of the digamma function. Hence, we can write
$$sum_{n=0}^infty frac{1}{(3n+1)^2}=frac19 psi'(1/3)$$
and
$$sum_{n=0}^infty frac{1}{(3n+2)^2}=frac19 psi'(2/3)$$
Interestingly, since we have
$$sum_{n=0}^infty left(frac1{(3n+3)^2}+frac1{(3n+2)^2}+frac1{(3n+1)^2}right)=frac{pi^2}{6}$$
we find that
$$psi'(1/3)+psi'(2/3) = 4pi^2/3$$
$endgroup$
$begingroup$
Why does one psi lack a '
$endgroup$
– Dale
Jan 13 at 18:13
$begingroup$
@dale That ommission is an obvious typographical error. I've edited accordingly.
$endgroup$
– Mark Viola
Jan 13 at 18:59
$begingroup$
Yes, at least one of us. Note that $sum_{n=0}^infty left(frac1{(3n+3)^2}+frac1{(3n+2)^2}+frac1{(3n+1)^2}right)=frac{pi^2}{6}$ and hence $$frac19(psi'(1/3)+psi'(2/3))=frac{pi^2}{6}-frac{pi^2}{54}=frac{8pi^2}{54}=frac19left(frac{4pi^2}{3}right)$$Now multiply by $9$.
$endgroup$
– Mark Viola
Jan 13 at 19:29
add a comment |
$begingroup$
Note that we have
$$psi'(z)=sum_{n=0}^infty frac{1}{(n+z)^2}$$
where $psi'(z)$ is the derivative of the digamma function. Hence, we can write
$$sum_{n=0}^infty frac{1}{(3n+1)^2}=frac19 psi'(1/3)$$
and
$$sum_{n=0}^infty frac{1}{(3n+2)^2}=frac19 psi'(2/3)$$
Interestingly, since we have
$$sum_{n=0}^infty left(frac1{(3n+3)^2}+frac1{(3n+2)^2}+frac1{(3n+1)^2}right)=frac{pi^2}{6}$$
we find that
$$psi'(1/3)+psi'(2/3) = 4pi^2/3$$
$endgroup$
Note that we have
$$psi'(z)=sum_{n=0}^infty frac{1}{(n+z)^2}$$
where $psi'(z)$ is the derivative of the digamma function. Hence, we can write
$$sum_{n=0}^infty frac{1}{(3n+1)^2}=frac19 psi'(1/3)$$
and
$$sum_{n=0}^infty frac{1}{(3n+2)^2}=frac19 psi'(2/3)$$
Interestingly, since we have
$$sum_{n=0}^infty left(frac1{(3n+3)^2}+frac1{(3n+2)^2}+frac1{(3n+1)^2}right)=frac{pi^2}{6}$$
we find that
$$psi'(1/3)+psi'(2/3) = 4pi^2/3$$
edited Jan 13 at 18:59
answered Jan 3 at 17:02
Mark ViolaMark Viola
131k1275171
131k1275171
$begingroup$
Why does one psi lack a '
$endgroup$
– Dale
Jan 13 at 18:13
$begingroup$
@dale That ommission is an obvious typographical error. I've edited accordingly.
$endgroup$
– Mark Viola
Jan 13 at 18:59
$begingroup$
Yes, at least one of us. Note that $sum_{n=0}^infty left(frac1{(3n+3)^2}+frac1{(3n+2)^2}+frac1{(3n+1)^2}right)=frac{pi^2}{6}$ and hence $$frac19(psi'(1/3)+psi'(2/3))=frac{pi^2}{6}-frac{pi^2}{54}=frac{8pi^2}{54}=frac19left(frac{4pi^2}{3}right)$$Now multiply by $9$.
$endgroup$
– Mark Viola
Jan 13 at 19:29
add a comment |
$begingroup$
Why does one psi lack a '
$endgroup$
– Dale
Jan 13 at 18:13
$begingroup$
@dale That ommission is an obvious typographical error. I've edited accordingly.
$endgroup$
– Mark Viola
Jan 13 at 18:59
$begingroup$
Yes, at least one of us. Note that $sum_{n=0}^infty left(frac1{(3n+3)^2}+frac1{(3n+2)^2}+frac1{(3n+1)^2}right)=frac{pi^2}{6}$ and hence $$frac19(psi'(1/3)+psi'(2/3))=frac{pi^2}{6}-frac{pi^2}{54}=frac{8pi^2}{54}=frac19left(frac{4pi^2}{3}right)$$Now multiply by $9$.
$endgroup$
– Mark Viola
Jan 13 at 19:29
$begingroup$
Why does one psi lack a '
$endgroup$
– Dale
Jan 13 at 18:13
$begingroup$
Why does one psi lack a '
$endgroup$
– Dale
Jan 13 at 18:13
$begingroup$
@dale That ommission is an obvious typographical error. I've edited accordingly.
$endgroup$
– Mark Viola
Jan 13 at 18:59
$begingroup$
@dale That ommission is an obvious typographical error. I've edited accordingly.
$endgroup$
– Mark Viola
Jan 13 at 18:59
$begingroup$
Yes, at least one of us. Note that $sum_{n=0}^infty left(frac1{(3n+3)^2}+frac1{(3n+2)^2}+frac1{(3n+1)^2}right)=frac{pi^2}{6}$ and hence $$frac19(psi'(1/3)+psi'(2/3))=frac{pi^2}{6}-frac{pi^2}{54}=frac{8pi^2}{54}=frac19left(frac{4pi^2}{3}right)$$Now multiply by $9$.
$endgroup$
– Mark Viola
Jan 13 at 19:29
$begingroup$
Yes, at least one of us. Note that $sum_{n=0}^infty left(frac1{(3n+3)^2}+frac1{(3n+2)^2}+frac1{(3n+1)^2}right)=frac{pi^2}{6}$ and hence $$frac19(psi'(1/3)+psi'(2/3))=frac{pi^2}{6}-frac{pi^2}{54}=frac{8pi^2}{54}=frac19left(frac{4pi^2}{3}right)$$Now multiply by $9$.
$endgroup$
– Mark Viola
Jan 13 at 19:29
add a comment |
$begingroup$
As a complement to Mark's answer,
$$sum_{ngeq 0}frac{1}{(3n+1)^2}=-int_{0}^{1}sum_{ngeq 0} x^{3n}log(x),dx=int_{0}^{1}frac{-log x}{1-x^3},dx $$
(and similarly $sum_{ngeq 0}frac{1}{(3n+2)^2}$) can be expressed in terms of dilogarithms, since
$$ int_{0}^{1}frac{-log x}{1-a x}=frac{text{Li}_2(a)}{a} $$
for any $|a|leq 1$, with $text{Li}_2(a)=sum_{ngeq 1}frac{a^n}{n^2}$. This is equivalent to stating that $psi'left(frac{1}{3}right)$ and $psi'left(frac{2}{3}right)$ can be computed through the discrete Fourier transform. It is worth noticing that
$$text{Re},text{Li}_2(e^{itheta})=sum_{ngeq 1}frac{cos(ntheta)}{n^2} $$
is a continuous and piecewise-parabolic function, as the formal primitive of the sawtooth wave. On the contrary, $text{Im},text{Li}_2(e^{itheta})$ does not have a nice closed form, in general. Ref.: https://en.wikipedia.org/wiki/Spence%27s_function
$endgroup$
add a comment |
$begingroup$
As a complement to Mark's answer,
$$sum_{ngeq 0}frac{1}{(3n+1)^2}=-int_{0}^{1}sum_{ngeq 0} x^{3n}log(x),dx=int_{0}^{1}frac{-log x}{1-x^3},dx $$
(and similarly $sum_{ngeq 0}frac{1}{(3n+2)^2}$) can be expressed in terms of dilogarithms, since
$$ int_{0}^{1}frac{-log x}{1-a x}=frac{text{Li}_2(a)}{a} $$
for any $|a|leq 1$, with $text{Li}_2(a)=sum_{ngeq 1}frac{a^n}{n^2}$. This is equivalent to stating that $psi'left(frac{1}{3}right)$ and $psi'left(frac{2}{3}right)$ can be computed through the discrete Fourier transform. It is worth noticing that
$$text{Re},text{Li}_2(e^{itheta})=sum_{ngeq 1}frac{cos(ntheta)}{n^2} $$
is a continuous and piecewise-parabolic function, as the formal primitive of the sawtooth wave. On the contrary, $text{Im},text{Li}_2(e^{itheta})$ does not have a nice closed form, in general. Ref.: https://en.wikipedia.org/wiki/Spence%27s_function
$endgroup$
add a comment |
$begingroup$
As a complement to Mark's answer,
$$sum_{ngeq 0}frac{1}{(3n+1)^2}=-int_{0}^{1}sum_{ngeq 0} x^{3n}log(x),dx=int_{0}^{1}frac{-log x}{1-x^3},dx $$
(and similarly $sum_{ngeq 0}frac{1}{(3n+2)^2}$) can be expressed in terms of dilogarithms, since
$$ int_{0}^{1}frac{-log x}{1-a x}=frac{text{Li}_2(a)}{a} $$
for any $|a|leq 1$, with $text{Li}_2(a)=sum_{ngeq 1}frac{a^n}{n^2}$. This is equivalent to stating that $psi'left(frac{1}{3}right)$ and $psi'left(frac{2}{3}right)$ can be computed through the discrete Fourier transform. It is worth noticing that
$$text{Re},text{Li}_2(e^{itheta})=sum_{ngeq 1}frac{cos(ntheta)}{n^2} $$
is a continuous and piecewise-parabolic function, as the formal primitive of the sawtooth wave. On the contrary, $text{Im},text{Li}_2(e^{itheta})$ does not have a nice closed form, in general. Ref.: https://en.wikipedia.org/wiki/Spence%27s_function
$endgroup$
As a complement to Mark's answer,
$$sum_{ngeq 0}frac{1}{(3n+1)^2}=-int_{0}^{1}sum_{ngeq 0} x^{3n}log(x),dx=int_{0}^{1}frac{-log x}{1-x^3},dx $$
(and similarly $sum_{ngeq 0}frac{1}{(3n+2)^2}$) can be expressed in terms of dilogarithms, since
$$ int_{0}^{1}frac{-log x}{1-a x}=frac{text{Li}_2(a)}{a} $$
for any $|a|leq 1$, with $text{Li}_2(a)=sum_{ngeq 1}frac{a^n}{n^2}$. This is equivalent to stating that $psi'left(frac{1}{3}right)$ and $psi'left(frac{2}{3}right)$ can be computed through the discrete Fourier transform. It is worth noticing that
$$text{Re},text{Li}_2(e^{itheta})=sum_{ngeq 1}frac{cos(ntheta)}{n^2} $$
is a continuous and piecewise-parabolic function, as the formal primitive of the sawtooth wave. On the contrary, $text{Im},text{Li}_2(e^{itheta})$ does not have a nice closed form, in general. Ref.: https://en.wikipedia.org/wiki/Spence%27s_function
answered Jan 3 at 20:40
Jack D'AurizioJack D'Aurizio
288k33280659
288k33280659
add a comment |
add a comment |
$begingroup$
Polylogarithms
A useful formula that can be applied here is
$$
frac13sum_{k=0}^2e^{2pi ijk/3}=[3mid j]tag1
$$
So
$$
begin{align}newcommand{Li}{operatorname{Li}}
sum_{j=0}^inftyfrac1{(3j+1)^2}
&=frac13sum_{k=0}^2sum_{j=1}^infty e^{2pi i(j-1)k/3}frac1{j^2}\
&=frac13left(frac{pi^2}6+e^{-2pi i/3}Li_2left(e^{2pi i/3}right)+e^{2pi i/3}Li_2left(e^{-2pi i/3}right)right)tag2
end{align}
$$
Mathematica gives $1.12173301393634378687$ usingN[1/3(Pi^2/6 + Exp[-2Pi I/3]PolyLog[2,Exp[2Pi I/3]]+
Exp[2Pi I/3] PolyLog[2,Exp[-2Pi I/3]]),20]
Extended Harmonic Numbers
Another approach is to use the Extended Harmonic Numbers.
$$
H(x)=sum_{k=1}^inftyleft(frac1k-frac1{k+x}right)tag3
$$
where
$$
H'(x)=sum_{k=1}^inftyfrac1{(k+x)^2}tag5
$$
Giving
$$
frac19H'!left(-frac23right)=sum_{k=0}^inftyfrac1{(3k+1)^2}tag6
$$
Mathematica gives $1.1217330139363437869$ usingN[1/9HarmonicNumber'[-2/3],20]
Euler-Maclaurin Sum Formula
Although it does not give a closed form, the Euler-Maclaurin Sum Formula allows us to accelerate the computation of the sum.
$$
begin{align}
sum_{k=0}^nfrac1{(3k+1)^2}
&sim C-frac1{3(3n+1)}+frac1{2(3n+1)^2}-frac1{2(3n+1)^3}+frac9{10(3n+1)^5}\
&-frac{81}{14(3n+1)^7}+frac{729}{10(3n+1)^9}-frac{32805}{22(3n+1)^{11}}tag7
end{align}
$$
Using $n=100$ in $(7)$, we get
$$
sum_{k=0}^inftyfrac1{(3k+1)^2}=1.1217330139363437868657782tag8
$$
$endgroup$
add a comment |
$begingroup$
Polylogarithms
A useful formula that can be applied here is
$$
frac13sum_{k=0}^2e^{2pi ijk/3}=[3mid j]tag1
$$
So
$$
begin{align}newcommand{Li}{operatorname{Li}}
sum_{j=0}^inftyfrac1{(3j+1)^2}
&=frac13sum_{k=0}^2sum_{j=1}^infty e^{2pi i(j-1)k/3}frac1{j^2}\
&=frac13left(frac{pi^2}6+e^{-2pi i/3}Li_2left(e^{2pi i/3}right)+e^{2pi i/3}Li_2left(e^{-2pi i/3}right)right)tag2
end{align}
$$
Mathematica gives $1.12173301393634378687$ usingN[1/3(Pi^2/6 + Exp[-2Pi I/3]PolyLog[2,Exp[2Pi I/3]]+
Exp[2Pi I/3] PolyLog[2,Exp[-2Pi I/3]]),20]
Extended Harmonic Numbers
Another approach is to use the Extended Harmonic Numbers.
$$
H(x)=sum_{k=1}^inftyleft(frac1k-frac1{k+x}right)tag3
$$
where
$$
H'(x)=sum_{k=1}^inftyfrac1{(k+x)^2}tag5
$$
Giving
$$
frac19H'!left(-frac23right)=sum_{k=0}^inftyfrac1{(3k+1)^2}tag6
$$
Mathematica gives $1.1217330139363437869$ usingN[1/9HarmonicNumber'[-2/3],20]
Euler-Maclaurin Sum Formula
Although it does not give a closed form, the Euler-Maclaurin Sum Formula allows us to accelerate the computation of the sum.
$$
begin{align}
sum_{k=0}^nfrac1{(3k+1)^2}
&sim C-frac1{3(3n+1)}+frac1{2(3n+1)^2}-frac1{2(3n+1)^3}+frac9{10(3n+1)^5}\
&-frac{81}{14(3n+1)^7}+frac{729}{10(3n+1)^9}-frac{32805}{22(3n+1)^{11}}tag7
end{align}
$$
Using $n=100$ in $(7)$, we get
$$
sum_{k=0}^inftyfrac1{(3k+1)^2}=1.1217330139363437868657782tag8
$$
$endgroup$
add a comment |
$begingroup$
Polylogarithms
A useful formula that can be applied here is
$$
frac13sum_{k=0}^2e^{2pi ijk/3}=[3mid j]tag1
$$
So
$$
begin{align}newcommand{Li}{operatorname{Li}}
sum_{j=0}^inftyfrac1{(3j+1)^2}
&=frac13sum_{k=0}^2sum_{j=1}^infty e^{2pi i(j-1)k/3}frac1{j^2}\
&=frac13left(frac{pi^2}6+e^{-2pi i/3}Li_2left(e^{2pi i/3}right)+e^{2pi i/3}Li_2left(e^{-2pi i/3}right)right)tag2
end{align}
$$
Mathematica gives $1.12173301393634378687$ usingN[1/3(Pi^2/6 + Exp[-2Pi I/3]PolyLog[2,Exp[2Pi I/3]]+
Exp[2Pi I/3] PolyLog[2,Exp[-2Pi I/3]]),20]
Extended Harmonic Numbers
Another approach is to use the Extended Harmonic Numbers.
$$
H(x)=sum_{k=1}^inftyleft(frac1k-frac1{k+x}right)tag3
$$
where
$$
H'(x)=sum_{k=1}^inftyfrac1{(k+x)^2}tag5
$$
Giving
$$
frac19H'!left(-frac23right)=sum_{k=0}^inftyfrac1{(3k+1)^2}tag6
$$
Mathematica gives $1.1217330139363437869$ usingN[1/9HarmonicNumber'[-2/3],20]
Euler-Maclaurin Sum Formula
Although it does not give a closed form, the Euler-Maclaurin Sum Formula allows us to accelerate the computation of the sum.
$$
begin{align}
sum_{k=0}^nfrac1{(3k+1)^2}
&sim C-frac1{3(3n+1)}+frac1{2(3n+1)^2}-frac1{2(3n+1)^3}+frac9{10(3n+1)^5}\
&-frac{81}{14(3n+1)^7}+frac{729}{10(3n+1)^9}-frac{32805}{22(3n+1)^{11}}tag7
end{align}
$$
Using $n=100$ in $(7)$, we get
$$
sum_{k=0}^inftyfrac1{(3k+1)^2}=1.1217330139363437868657782tag8
$$
$endgroup$
Polylogarithms
A useful formula that can be applied here is
$$
frac13sum_{k=0}^2e^{2pi ijk/3}=[3mid j]tag1
$$
So
$$
begin{align}newcommand{Li}{operatorname{Li}}
sum_{j=0}^inftyfrac1{(3j+1)^2}
&=frac13sum_{k=0}^2sum_{j=1}^infty e^{2pi i(j-1)k/3}frac1{j^2}\
&=frac13left(frac{pi^2}6+e^{-2pi i/3}Li_2left(e^{2pi i/3}right)+e^{2pi i/3}Li_2left(e^{-2pi i/3}right)right)tag2
end{align}
$$
Mathematica gives $1.12173301393634378687$ usingN[1/3(Pi^2/6 + Exp[-2Pi I/3]PolyLog[2,Exp[2Pi I/3]]+
Exp[2Pi I/3] PolyLog[2,Exp[-2Pi I/3]]),20]
Extended Harmonic Numbers
Another approach is to use the Extended Harmonic Numbers.
$$
H(x)=sum_{k=1}^inftyleft(frac1k-frac1{k+x}right)tag3
$$
where
$$
H'(x)=sum_{k=1}^inftyfrac1{(k+x)^2}tag5
$$
Giving
$$
frac19H'!left(-frac23right)=sum_{k=0}^inftyfrac1{(3k+1)^2}tag6
$$
Mathematica gives $1.1217330139363437869$ usingN[1/9HarmonicNumber'[-2/3],20]
Euler-Maclaurin Sum Formula
Although it does not give a closed form, the Euler-Maclaurin Sum Formula allows us to accelerate the computation of the sum.
$$
begin{align}
sum_{k=0}^nfrac1{(3k+1)^2}
&sim C-frac1{3(3n+1)}+frac1{2(3n+1)^2}-frac1{2(3n+1)^3}+frac9{10(3n+1)^5}\
&-frac{81}{14(3n+1)^7}+frac{729}{10(3n+1)^9}-frac{32805}{22(3n+1)^{11}}tag7
end{align}
$$
Using $n=100$ in $(7)$, we get
$$
sum_{k=0}^inftyfrac1{(3k+1)^2}=1.1217330139363437868657782tag8
$$
edited Jan 14 at 3:19
answered Jan 13 at 20:48
robjohn♦robjohn
266k27304626
266k27304626
add a comment |
add a comment |
$begingroup$
KM101 deleted his hint... not sure why.
$frac{1}{3^2}+frac{1}{6^2}+frac{1}{9^2}+dots=frac{1}{3^2 1^2}+frac{1}{3^2 2^2}+frac{1}{3^2 3^3}+dots=frac{1}{9}(frac{1}{1^2}+frac{1}{2^2}+frac{1}{3^2}+dots)= frac{pi^2}{54}$
$frac{1}{2^2}+frac{1}{5^2}+frac{1}{8^2}+dots=frac{1}{2^2 1^2}+frac{1}{3^2?? 1^2}+frac{1}{3^2 ??1^2}$
$endgroup$
1
$begingroup$
How does this answer the OP's question?
$endgroup$
– Mark Viola
Jan 3 at 20:24
add a comment |
$begingroup$
KM101 deleted his hint... not sure why.
$frac{1}{3^2}+frac{1}{6^2}+frac{1}{9^2}+dots=frac{1}{3^2 1^2}+frac{1}{3^2 2^2}+frac{1}{3^2 3^3}+dots=frac{1}{9}(frac{1}{1^2}+frac{1}{2^2}+frac{1}{3^2}+dots)= frac{pi^2}{54}$
$frac{1}{2^2}+frac{1}{5^2}+frac{1}{8^2}+dots=frac{1}{2^2 1^2}+frac{1}{3^2?? 1^2}+frac{1}{3^2 ??1^2}$
$endgroup$
1
$begingroup$
How does this answer the OP's question?
$endgroup$
– Mark Viola
Jan 3 at 20:24
add a comment |
$begingroup$
KM101 deleted his hint... not sure why.
$frac{1}{3^2}+frac{1}{6^2}+frac{1}{9^2}+dots=frac{1}{3^2 1^2}+frac{1}{3^2 2^2}+frac{1}{3^2 3^3}+dots=frac{1}{9}(frac{1}{1^2}+frac{1}{2^2}+frac{1}{3^2}+dots)= frac{pi^2}{54}$
$frac{1}{2^2}+frac{1}{5^2}+frac{1}{8^2}+dots=frac{1}{2^2 1^2}+frac{1}{3^2?? 1^2}+frac{1}{3^2 ??1^2}$
$endgroup$
KM101 deleted his hint... not sure why.
$frac{1}{3^2}+frac{1}{6^2}+frac{1}{9^2}+dots=frac{1}{3^2 1^2}+frac{1}{3^2 2^2}+frac{1}{3^2 3^3}+dots=frac{1}{9}(frac{1}{1^2}+frac{1}{2^2}+frac{1}{3^2}+dots)= frac{pi^2}{54}$
$frac{1}{2^2}+frac{1}{5^2}+frac{1}{8^2}+dots=frac{1}{2^2 1^2}+frac{1}{3^2?? 1^2}+frac{1}{3^2 ??1^2}$
edited Jan 13 at 18:15
answered Jan 3 at 16:37
DaleDale
1,1801334
1,1801334
1
$begingroup$
How does this answer the OP's question?
$endgroup$
– Mark Viola
Jan 3 at 20:24
add a comment |
1
$begingroup$
How does this answer the OP's question?
$endgroup$
– Mark Viola
Jan 3 at 20:24
1
1
$begingroup$
How does this answer the OP's question?
$endgroup$
– Mark Viola
Jan 3 at 20:24
$begingroup$
How does this answer the OP's question?
$endgroup$
– Mark Viola
Jan 3 at 20:24
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060742%2fhow-to-take-every-third-element-in-a-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The first sum you mentioned is $frac{1}{9}$ of the initial sum.
$endgroup$
– Peter
Jan 3 at 16:26
$begingroup$
The first sum can be rewritten as$$frac 19+frac 1{36}+cdots=frac 19left[1+frac 14+frac 19+cdotsright]color{blue}{=frac 19zeta(2)}$$
$endgroup$
– Frank W.
Jan 3 at 16:30
$begingroup$
If I may, but what is this problem for? When would you ever need to calculate each sum?
$endgroup$
– Frank W.
Jan 3 at 16:31
$begingroup$
@Peter that means that the other two sums must be different. as if they were the same the total would be $frac{3}{9}$ the initial sum.
$endgroup$
– Dale
Jan 3 at 16:38
$begingroup$
@Dale Peter said the first sum
$endgroup$
– Frank W.
Jan 3 at 16:43