On calculating the limit of the infinite product $prod_{k=3}^n (1-tan^4frac{pi}{2^k})$












5












$begingroup$



Let $S_n=prod_{k=3}^n (1-tan^4frac{pi}{2^k})$. What is the value of $lim_{n to infty} S_n$ ?




What I attempted:-



$log S_n=sum_{k=3}^n log (1-tan^4frac{pi}{2^k})$.

Since $lim_{x to 0} frac{tan x}{x}=1$, $tan^4frac{pi}{2^k}approx left(frac{pi}{2^k}right)^4$

Thus, $log S_n=sum_{k=3}^n log (1-frac{pi^4}{2^{4k}})approx sum_{k=3}^nleft( -frac{pi^4}{2^{4k}}right) $



Taking limit as $n to infty$, $lim_{n to infty} log S_n=frac{-pi^4}{3840}$.



Finally, $lim_{n to infty}S_n=e^{frac{-pi^4}{3840}}approx 1-frac{pi^4}{3840}$



Am I correct? Is there any other better method which yield the accurate limit? I was told that the exact limit should be one of the $4$ options:- $frac{pi^3}{4},frac{pi^3}{16}, frac{pi^3}{32},frac{pi^3}{256}$. I guess the third option is correct as it is giving almost the same value that I have obtained.










share|cite|improve this question











$endgroup$

















    5












    $begingroup$



    Let $S_n=prod_{k=3}^n (1-tan^4frac{pi}{2^k})$. What is the value of $lim_{n to infty} S_n$ ?




    What I attempted:-



    $log S_n=sum_{k=3}^n log (1-tan^4frac{pi}{2^k})$.

    Since $lim_{x to 0} frac{tan x}{x}=1$, $tan^4frac{pi}{2^k}approx left(frac{pi}{2^k}right)^4$

    Thus, $log S_n=sum_{k=3}^n log (1-frac{pi^4}{2^{4k}})approx sum_{k=3}^nleft( -frac{pi^4}{2^{4k}}right) $



    Taking limit as $n to infty$, $lim_{n to infty} log S_n=frac{-pi^4}{3840}$.



    Finally, $lim_{n to infty}S_n=e^{frac{-pi^4}{3840}}approx 1-frac{pi^4}{3840}$



    Am I correct? Is there any other better method which yield the accurate limit? I was told that the exact limit should be one of the $4$ options:- $frac{pi^3}{4},frac{pi^3}{16}, frac{pi^3}{32},frac{pi^3}{256}$. I guess the third option is correct as it is giving almost the same value that I have obtained.










    share|cite|improve this question











    $endgroup$















      5












      5








      5


      1



      $begingroup$



      Let $S_n=prod_{k=3}^n (1-tan^4frac{pi}{2^k})$. What is the value of $lim_{n to infty} S_n$ ?




      What I attempted:-



      $log S_n=sum_{k=3}^n log (1-tan^4frac{pi}{2^k})$.

      Since $lim_{x to 0} frac{tan x}{x}=1$, $tan^4frac{pi}{2^k}approx left(frac{pi}{2^k}right)^4$

      Thus, $log S_n=sum_{k=3}^n log (1-frac{pi^4}{2^{4k}})approx sum_{k=3}^nleft( -frac{pi^4}{2^{4k}}right) $



      Taking limit as $n to infty$, $lim_{n to infty} log S_n=frac{-pi^4}{3840}$.



      Finally, $lim_{n to infty}S_n=e^{frac{-pi^4}{3840}}approx 1-frac{pi^4}{3840}$



      Am I correct? Is there any other better method which yield the accurate limit? I was told that the exact limit should be one of the $4$ options:- $frac{pi^3}{4},frac{pi^3}{16}, frac{pi^3}{32},frac{pi^3}{256}$. I guess the third option is correct as it is giving almost the same value that I have obtained.










      share|cite|improve this question











      $endgroup$





      Let $S_n=prod_{k=3}^n (1-tan^4frac{pi}{2^k})$. What is the value of $lim_{n to infty} S_n$ ?




      What I attempted:-



      $log S_n=sum_{k=3}^n log (1-tan^4frac{pi}{2^k})$.

      Since $lim_{x to 0} frac{tan x}{x}=1$, $tan^4frac{pi}{2^k}approx left(frac{pi}{2^k}right)^4$

      Thus, $log S_n=sum_{k=3}^n log (1-frac{pi^4}{2^{4k}})approx sum_{k=3}^nleft( -frac{pi^4}{2^{4k}}right) $



      Taking limit as $n to infty$, $lim_{n to infty} log S_n=frac{-pi^4}{3840}$.



      Finally, $lim_{n to infty}S_n=e^{frac{-pi^4}{3840}}approx 1-frac{pi^4}{3840}$



      Am I correct? Is there any other better method which yield the accurate limit? I was told that the exact limit should be one of the $4$ options:- $frac{pi^3}{4},frac{pi^3}{16}, frac{pi^3}{32},frac{pi^3}{256}$. I guess the third option is correct as it is giving almost the same value that I have obtained.







      sequences-and-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 3 at 16:52









      Robert Z

      94.5k1063134




      94.5k1063134










      asked Jan 3 at 15:39









      BhargobBhargob

      663415




      663415






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          You obtained an approximation of the exact value. In order to find such exact vale, note that
          $$(1-tan^4(alpha/2))=(1+tan^2(alpha/2))(1-tan^2(alpha/2))=
          frac{4}{cos(alpha)}left(frac{tan(alpha/2)}{tan(alpha)}right)^2.$$

          Hence, as $n$ goes to infinity,
          $$prod_{k=3}^n left(1-tan^4(pi/2^k)right)=frac{4^{n-2}}{prod_{k=3}^ncos(pi/2^{k-1})}cdot left(prod_{k=3}^nfrac{tan(pi/2^k)}{tan(pi/2^{k-1})}right)^2\=4^{n-2}cdot 2^{n-2}sin(pi/2^{n-1})cdot left(frac{tan(pi/2^n)}{tan(pi/2^{2})}right)^2to frac{pi^3}{32}$$
          where we used the known fact that
          $$prodlimits_{k=2}^{n}cosleft(frac{pi }{2^{k}}right)=
          frac{1}{2^{n-1}sin(pi/2^n)}$$

          (see for example How to evaluate $limlimits_{nto infty}prodlimits_{r=2}^{n}cosleft(frac{pi}{2^{r}}right)$).






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
            $endgroup$
            – Robert Z
            Jan 3 at 16:50



















          1












          $begingroup$

          What you're describing is how to arrive at an approximation of the actual product.
          But you can compute the exact value for the product using trigonometric identities.



          $$begin{split}
          S_n&=prod_{k=3}^n (1-tan^4frac{pi}{2^k})\
          &=prod_{k=3}^n (1-tan^2frac{pi}{2^k})(1+tan^2frac{pi}{2^k})\
          &=prod_{k=3}^n (frac {cos^2(frac{pi}{2^k}) - sin^2(frac{pi}{2^k})}{cos^2 frac{pi}{2^k}})(frac 1 {cos^2frac{pi}{2^k}})\
          &=prod_{k=3}^n frac {cos(frac {pi}{2^{k-1}})}{cos^4 frac{pi}{2^k}}\
          &= frac{cosfrac pi 4}{cos^4 frac pi 8}frac{cosfrac pi 8}{cos^4 frac pi {16}}frac{cosfrac pi 16}{cos^4 frac pi {32}}...\
          &=cosfrac pi 4 prod_{k=3}^n frac 1 {cos^3 frac pi {2^k}}
          end{split}$$

          Now because $$frac 1 {cos theta}=frac {2 sin theta}{sin 2theta}$$
          you can verify that, for any $0<theta<pi$,
          $$
          prod_{k=1}^{+infty} frac 1 {cos frac theta {2^k}}=frac theta {sin theta}
          $$

          Which yields, for $theta=frac pi 4$,
          $$
          prod_{k=3}^{+infty} frac 1 {cos frac pi {2^k}}=frac pi {4sin frac pi 4}
          $$

          So finally,
          $$lim_{nrightarrow+infty}S_n=left(cos{frac pi 4}right)frac {pi^3} {4^3sin^3 frac pi 4}$$
          In other words,
          $$lim_{nrightarrow+infty}S_n=frac {pi^3}{32}$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060690%2fon-calculating-the-limit-of-the-infinite-product-prod-k-3n-1-tan4-frac%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            You obtained an approximation of the exact value. In order to find such exact vale, note that
            $$(1-tan^4(alpha/2))=(1+tan^2(alpha/2))(1-tan^2(alpha/2))=
            frac{4}{cos(alpha)}left(frac{tan(alpha/2)}{tan(alpha)}right)^2.$$

            Hence, as $n$ goes to infinity,
            $$prod_{k=3}^n left(1-tan^4(pi/2^k)right)=frac{4^{n-2}}{prod_{k=3}^ncos(pi/2^{k-1})}cdot left(prod_{k=3}^nfrac{tan(pi/2^k)}{tan(pi/2^{k-1})}right)^2\=4^{n-2}cdot 2^{n-2}sin(pi/2^{n-1})cdot left(frac{tan(pi/2^n)}{tan(pi/2^{2})}right)^2to frac{pi^3}{32}$$
            where we used the known fact that
            $$prodlimits_{k=2}^{n}cosleft(frac{pi }{2^{k}}right)=
            frac{1}{2^{n-1}sin(pi/2^n)}$$

            (see for example How to evaluate $limlimits_{nto infty}prodlimits_{r=2}^{n}cosleft(frac{pi}{2^{r}}right)$).






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
              $endgroup$
              – Robert Z
              Jan 3 at 16:50
















            4












            $begingroup$

            You obtained an approximation of the exact value. In order to find such exact vale, note that
            $$(1-tan^4(alpha/2))=(1+tan^2(alpha/2))(1-tan^2(alpha/2))=
            frac{4}{cos(alpha)}left(frac{tan(alpha/2)}{tan(alpha)}right)^2.$$

            Hence, as $n$ goes to infinity,
            $$prod_{k=3}^n left(1-tan^4(pi/2^k)right)=frac{4^{n-2}}{prod_{k=3}^ncos(pi/2^{k-1})}cdot left(prod_{k=3}^nfrac{tan(pi/2^k)}{tan(pi/2^{k-1})}right)^2\=4^{n-2}cdot 2^{n-2}sin(pi/2^{n-1})cdot left(frac{tan(pi/2^n)}{tan(pi/2^{2})}right)^2to frac{pi^3}{32}$$
            where we used the known fact that
            $$prodlimits_{k=2}^{n}cosleft(frac{pi }{2^{k}}right)=
            frac{1}{2^{n-1}sin(pi/2^n)}$$

            (see for example How to evaluate $limlimits_{nto infty}prodlimits_{r=2}^{n}cosleft(frac{pi}{2^{r}}right)$).






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
              $endgroup$
              – Robert Z
              Jan 3 at 16:50














            4












            4








            4





            $begingroup$

            You obtained an approximation of the exact value. In order to find such exact vale, note that
            $$(1-tan^4(alpha/2))=(1+tan^2(alpha/2))(1-tan^2(alpha/2))=
            frac{4}{cos(alpha)}left(frac{tan(alpha/2)}{tan(alpha)}right)^2.$$

            Hence, as $n$ goes to infinity,
            $$prod_{k=3}^n left(1-tan^4(pi/2^k)right)=frac{4^{n-2}}{prod_{k=3}^ncos(pi/2^{k-1})}cdot left(prod_{k=3}^nfrac{tan(pi/2^k)}{tan(pi/2^{k-1})}right)^2\=4^{n-2}cdot 2^{n-2}sin(pi/2^{n-1})cdot left(frac{tan(pi/2^n)}{tan(pi/2^{2})}right)^2to frac{pi^3}{32}$$
            where we used the known fact that
            $$prodlimits_{k=2}^{n}cosleft(frac{pi }{2^{k}}right)=
            frac{1}{2^{n-1}sin(pi/2^n)}$$

            (see for example How to evaluate $limlimits_{nto infty}prodlimits_{r=2}^{n}cosleft(frac{pi}{2^{r}}right)$).






            share|cite|improve this answer











            $endgroup$



            You obtained an approximation of the exact value. In order to find such exact vale, note that
            $$(1-tan^4(alpha/2))=(1+tan^2(alpha/2))(1-tan^2(alpha/2))=
            frac{4}{cos(alpha)}left(frac{tan(alpha/2)}{tan(alpha)}right)^2.$$

            Hence, as $n$ goes to infinity,
            $$prod_{k=3}^n left(1-tan^4(pi/2^k)right)=frac{4^{n-2}}{prod_{k=3}^ncos(pi/2^{k-1})}cdot left(prod_{k=3}^nfrac{tan(pi/2^k)}{tan(pi/2^{k-1})}right)^2\=4^{n-2}cdot 2^{n-2}sin(pi/2^{n-1})cdot left(frac{tan(pi/2^n)}{tan(pi/2^{2})}right)^2to frac{pi^3}{32}$$
            where we used the known fact that
            $$prodlimits_{k=2}^{n}cosleft(frac{pi }{2^{k}}right)=
            frac{1}{2^{n-1}sin(pi/2^n)}$$

            (see for example How to evaluate $limlimits_{nto infty}prodlimits_{r=2}^{n}cosleft(frac{pi}{2^{r}}right)$).







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 3 at 16:51

























            answered Jan 3 at 15:56









            Robert ZRobert Z

            94.5k1063134




            94.5k1063134












            • $begingroup$
              Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
              $endgroup$
              – Robert Z
              Jan 3 at 16:50


















            • $begingroup$
              Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
              $endgroup$
              – Robert Z
              Jan 3 at 16:50
















            $begingroup$
            Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
            $endgroup$
            – Robert Z
            Jan 3 at 16:50




            $begingroup$
            Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
            $endgroup$
            – Robert Z
            Jan 3 at 16:50











            1












            $begingroup$

            What you're describing is how to arrive at an approximation of the actual product.
            But you can compute the exact value for the product using trigonometric identities.



            $$begin{split}
            S_n&=prod_{k=3}^n (1-tan^4frac{pi}{2^k})\
            &=prod_{k=3}^n (1-tan^2frac{pi}{2^k})(1+tan^2frac{pi}{2^k})\
            &=prod_{k=3}^n (frac {cos^2(frac{pi}{2^k}) - sin^2(frac{pi}{2^k})}{cos^2 frac{pi}{2^k}})(frac 1 {cos^2frac{pi}{2^k}})\
            &=prod_{k=3}^n frac {cos(frac {pi}{2^{k-1}})}{cos^4 frac{pi}{2^k}}\
            &= frac{cosfrac pi 4}{cos^4 frac pi 8}frac{cosfrac pi 8}{cos^4 frac pi {16}}frac{cosfrac pi 16}{cos^4 frac pi {32}}...\
            &=cosfrac pi 4 prod_{k=3}^n frac 1 {cos^3 frac pi {2^k}}
            end{split}$$

            Now because $$frac 1 {cos theta}=frac {2 sin theta}{sin 2theta}$$
            you can verify that, for any $0<theta<pi$,
            $$
            prod_{k=1}^{+infty} frac 1 {cos frac theta {2^k}}=frac theta {sin theta}
            $$

            Which yields, for $theta=frac pi 4$,
            $$
            prod_{k=3}^{+infty} frac 1 {cos frac pi {2^k}}=frac pi {4sin frac pi 4}
            $$

            So finally,
            $$lim_{nrightarrow+infty}S_n=left(cos{frac pi 4}right)frac {pi^3} {4^3sin^3 frac pi 4}$$
            In other words,
            $$lim_{nrightarrow+infty}S_n=frac {pi^3}{32}$$






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              What you're describing is how to arrive at an approximation of the actual product.
              But you can compute the exact value for the product using trigonometric identities.



              $$begin{split}
              S_n&=prod_{k=3}^n (1-tan^4frac{pi}{2^k})\
              &=prod_{k=3}^n (1-tan^2frac{pi}{2^k})(1+tan^2frac{pi}{2^k})\
              &=prod_{k=3}^n (frac {cos^2(frac{pi}{2^k}) - sin^2(frac{pi}{2^k})}{cos^2 frac{pi}{2^k}})(frac 1 {cos^2frac{pi}{2^k}})\
              &=prod_{k=3}^n frac {cos(frac {pi}{2^{k-1}})}{cos^4 frac{pi}{2^k}}\
              &= frac{cosfrac pi 4}{cos^4 frac pi 8}frac{cosfrac pi 8}{cos^4 frac pi {16}}frac{cosfrac pi 16}{cos^4 frac pi {32}}...\
              &=cosfrac pi 4 prod_{k=3}^n frac 1 {cos^3 frac pi {2^k}}
              end{split}$$

              Now because $$frac 1 {cos theta}=frac {2 sin theta}{sin 2theta}$$
              you can verify that, for any $0<theta<pi$,
              $$
              prod_{k=1}^{+infty} frac 1 {cos frac theta {2^k}}=frac theta {sin theta}
              $$

              Which yields, for $theta=frac pi 4$,
              $$
              prod_{k=3}^{+infty} frac 1 {cos frac pi {2^k}}=frac pi {4sin frac pi 4}
              $$

              So finally,
              $$lim_{nrightarrow+infty}S_n=left(cos{frac pi 4}right)frac {pi^3} {4^3sin^3 frac pi 4}$$
              In other words,
              $$lim_{nrightarrow+infty}S_n=frac {pi^3}{32}$$






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                What you're describing is how to arrive at an approximation of the actual product.
                But you can compute the exact value for the product using trigonometric identities.



                $$begin{split}
                S_n&=prod_{k=3}^n (1-tan^4frac{pi}{2^k})\
                &=prod_{k=3}^n (1-tan^2frac{pi}{2^k})(1+tan^2frac{pi}{2^k})\
                &=prod_{k=3}^n (frac {cos^2(frac{pi}{2^k}) - sin^2(frac{pi}{2^k})}{cos^2 frac{pi}{2^k}})(frac 1 {cos^2frac{pi}{2^k}})\
                &=prod_{k=3}^n frac {cos(frac {pi}{2^{k-1}})}{cos^4 frac{pi}{2^k}}\
                &= frac{cosfrac pi 4}{cos^4 frac pi 8}frac{cosfrac pi 8}{cos^4 frac pi {16}}frac{cosfrac pi 16}{cos^4 frac pi {32}}...\
                &=cosfrac pi 4 prod_{k=3}^n frac 1 {cos^3 frac pi {2^k}}
                end{split}$$

                Now because $$frac 1 {cos theta}=frac {2 sin theta}{sin 2theta}$$
                you can verify that, for any $0<theta<pi$,
                $$
                prod_{k=1}^{+infty} frac 1 {cos frac theta {2^k}}=frac theta {sin theta}
                $$

                Which yields, for $theta=frac pi 4$,
                $$
                prod_{k=3}^{+infty} frac 1 {cos frac pi {2^k}}=frac pi {4sin frac pi 4}
                $$

                So finally,
                $$lim_{nrightarrow+infty}S_n=left(cos{frac pi 4}right)frac {pi^3} {4^3sin^3 frac pi 4}$$
                In other words,
                $$lim_{nrightarrow+infty}S_n=frac {pi^3}{32}$$






                share|cite|improve this answer











                $endgroup$



                What you're describing is how to arrive at an approximation of the actual product.
                But you can compute the exact value for the product using trigonometric identities.



                $$begin{split}
                S_n&=prod_{k=3}^n (1-tan^4frac{pi}{2^k})\
                &=prod_{k=3}^n (1-tan^2frac{pi}{2^k})(1+tan^2frac{pi}{2^k})\
                &=prod_{k=3}^n (frac {cos^2(frac{pi}{2^k}) - sin^2(frac{pi}{2^k})}{cos^2 frac{pi}{2^k}})(frac 1 {cos^2frac{pi}{2^k}})\
                &=prod_{k=3}^n frac {cos(frac {pi}{2^{k-1}})}{cos^4 frac{pi}{2^k}}\
                &= frac{cosfrac pi 4}{cos^4 frac pi 8}frac{cosfrac pi 8}{cos^4 frac pi {16}}frac{cosfrac pi 16}{cos^4 frac pi {32}}...\
                &=cosfrac pi 4 prod_{k=3}^n frac 1 {cos^3 frac pi {2^k}}
                end{split}$$

                Now because $$frac 1 {cos theta}=frac {2 sin theta}{sin 2theta}$$
                you can verify that, for any $0<theta<pi$,
                $$
                prod_{k=1}^{+infty} frac 1 {cos frac theta {2^k}}=frac theta {sin theta}
                $$

                Which yields, for $theta=frac pi 4$,
                $$
                prod_{k=3}^{+infty} frac 1 {cos frac pi {2^k}}=frac pi {4sin frac pi 4}
                $$

                So finally,
                $$lim_{nrightarrow+infty}S_n=left(cos{frac pi 4}right)frac {pi^3} {4^3sin^3 frac pi 4}$$
                In other words,
                $$lim_{nrightarrow+infty}S_n=frac {pi^3}{32}$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 3 at 16:18

























                answered Jan 3 at 16:12









                Stefan LafonStefan Lafon

                1,07616




                1,07616






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060690%2fon-calculating-the-limit-of-the-infinite-product-prod-k-3n-1-tan4-frac%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                    Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                    A Topological Invariant for $pi_3(U(n))$