ISNUMER excel funtion in PYTHON
I have the following dataset
sku ids link
1 55 1
2 56 3
3 57 ab
5 58 1
9 59 bc
10 60 1
I am trying to define the follow function to create a new column
def fmq(row):
if row['link'] == 1:
value = 10
else:
row['link']
return value
I am getting the following error
TypeError: ("'>' not supported between instances of 'str' and 'float'",
'occurred at index 0')
df['sub_link'] = df.apply(fmq, axis=1)
Final Output:
sku ids link sub_link
1 55 1 10
2 56 3 3
3 57 ab ab
5 58 1 10
9 59 bc bc
10 60 1 10
I know that in excel we can use isnumber([link]) function,
how can i replicate this function in python?
python python-3.x pandas python-2.7 numpy
add a comment |
I have the following dataset
sku ids link
1 55 1
2 56 3
3 57 ab
5 58 1
9 59 bc
10 60 1
I am trying to define the follow function to create a new column
def fmq(row):
if row['link'] == 1:
value = 10
else:
row['link']
return value
I am getting the following error
TypeError: ("'>' not supported between instances of 'str' and 'float'",
'occurred at index 0')
df['sub_link'] = df.apply(fmq, axis=1)
Final Output:
sku ids link sub_link
1 55 1 10
2 56 3 3
3 57 ab ab
5 58 1 10
9 59 bc bc
10 60 1 10
I know that in excel we can use isnumber([link]) function,
how can i replicate this function in python?
python python-3.x pandas python-2.7 numpy
add a comment |
I have the following dataset
sku ids link
1 55 1
2 56 3
3 57 ab
5 58 1
9 59 bc
10 60 1
I am trying to define the follow function to create a new column
def fmq(row):
if row['link'] == 1:
value = 10
else:
row['link']
return value
I am getting the following error
TypeError: ("'>' not supported between instances of 'str' and 'float'",
'occurred at index 0')
df['sub_link'] = df.apply(fmq, axis=1)
Final Output:
sku ids link sub_link
1 55 1 10
2 56 3 3
3 57 ab ab
5 58 1 10
9 59 bc bc
10 60 1 10
I know that in excel we can use isnumber([link]) function,
how can i replicate this function in python?
python python-3.x pandas python-2.7 numpy
I have the following dataset
sku ids link
1 55 1
2 56 3
3 57 ab
5 58 1
9 59 bc
10 60 1
I am trying to define the follow function to create a new column
def fmq(row):
if row['link'] == 1:
value = 10
else:
row['link']
return value
I am getting the following error
TypeError: ("'>' not supported between instances of 'str' and 'float'",
'occurred at index 0')
df['sub_link'] = df.apply(fmq, axis=1)
Final Output:
sku ids link sub_link
1 55 1 10
2 56 3 3
3 57 ab ab
5 58 1 10
9 59 bc bc
10 60 1 10
I know that in excel we can use isnumber([link]) function,
how can i replicate this function in python?
python python-3.x pandas python-2.7 numpy
python python-3.x pandas python-2.7 numpy
asked Nov 20 '18 at 20:10


Sai SumanthSai Sumanth
313
313
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
pd.to_numeric
+ mask
Use Pandas methods. In this case, you need to convert to numeric first.
link_num = pd.to_numeric(df['link'], errors='coerce')
df['sub_link'] = df['link'].mask(link_num == 1, 10)
Row-wise solutions such as apply
involve Python-level loops: they are inefficient and not recommended.
add a comment |
If I understand the problem correctly, you essentially want to test if something is an integer, correct? You can do
1) Casting
try:
to_test = int(value)
except Exception as e:
pass # In this case it could not be casted to an int
2) type checking
if isinstance(value, int):
# do thing
else:
# do other thing
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53400785%2fisnumer-excel-funtion-in-python%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
pd.to_numeric
+ mask
Use Pandas methods. In this case, you need to convert to numeric first.
link_num = pd.to_numeric(df['link'], errors='coerce')
df['sub_link'] = df['link'].mask(link_num == 1, 10)
Row-wise solutions such as apply
involve Python-level loops: they are inefficient and not recommended.
add a comment |
pd.to_numeric
+ mask
Use Pandas methods. In this case, you need to convert to numeric first.
link_num = pd.to_numeric(df['link'], errors='coerce')
df['sub_link'] = df['link'].mask(link_num == 1, 10)
Row-wise solutions such as apply
involve Python-level loops: they are inefficient and not recommended.
add a comment |
pd.to_numeric
+ mask
Use Pandas methods. In this case, you need to convert to numeric first.
link_num = pd.to_numeric(df['link'], errors='coerce')
df['sub_link'] = df['link'].mask(link_num == 1, 10)
Row-wise solutions such as apply
involve Python-level loops: they are inefficient and not recommended.
pd.to_numeric
+ mask
Use Pandas methods. In this case, you need to convert to numeric first.
link_num = pd.to_numeric(df['link'], errors='coerce')
df['sub_link'] = df['link'].mask(link_num == 1, 10)
Row-wise solutions such as apply
involve Python-level loops: they are inefficient and not recommended.
edited Nov 20 '18 at 20:24
answered Nov 20 '18 at 20:17


jppjpp
98.5k2159110
98.5k2159110
add a comment |
add a comment |
If I understand the problem correctly, you essentially want to test if something is an integer, correct? You can do
1) Casting
try:
to_test = int(value)
except Exception as e:
pass # In this case it could not be casted to an int
2) type checking
if isinstance(value, int):
# do thing
else:
# do other thing
add a comment |
If I understand the problem correctly, you essentially want to test if something is an integer, correct? You can do
1) Casting
try:
to_test = int(value)
except Exception as e:
pass # In this case it could not be casted to an int
2) type checking
if isinstance(value, int):
# do thing
else:
# do other thing
add a comment |
If I understand the problem correctly, you essentially want to test if something is an integer, correct? You can do
1) Casting
try:
to_test = int(value)
except Exception as e:
pass # In this case it could not be casted to an int
2) type checking
if isinstance(value, int):
# do thing
else:
# do other thing
If I understand the problem correctly, you essentially want to test if something is an integer, correct? You can do
1) Casting
try:
to_test = int(value)
except Exception as e:
pass # In this case it could not be casted to an int
2) type checking
if isinstance(value, int):
# do thing
else:
# do other thing
answered Nov 20 '18 at 20:14


Ian QuahIan Quah
693715
693715
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53400785%2fisnumer-excel-funtion-in-python%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown