Polylog property $operatorname{Li}_n(1-i)+(-1)^noperatorname{Li}_n(frac{1+i}2)$
$begingroup$
How can we calculate $$L_n=operatorname{Li}_n(1-i)+(-1)^noperatorname{Li}_nleft(frac{1+i}2right)?$$
I have found the following result manually:
$$L_1=-frac12pi i+lnfrac{1-i}2=-frac34pi i-frac12ln2$$
$$L_2=frac1{16}pi^2-ileft(frac14piln2+Gright)+frac5{96}pi^2-frac18ln^22+ileft(G-frac18piln2right)\
=frac{11}{96}pi^2-frac18ln^22-ifrac38piln2$$
Something I have found by using Mathematica:
$$L_3=-frac{1}{48} ln^32+frac{11}{192} pi ^2 ln2+i left(-frac{7 pi ^3}{128}-frac{1}{32} 3 pi ln^22right)$$
$$L_4=frac{1313 pi ^4}{92160}-frac{1}{384} ln ^42+frac{11}{768} pi ^2 ln ^22+i left(-frac{1}{64} pi ln ^32-frac{7}{256} pi ^3 ln 2right)$$
It seems like there is a method that Mathematica knows to simplify $L_n$. What is the method?
calculus polylogarithm
$endgroup$
add a comment |
$begingroup$
How can we calculate $$L_n=operatorname{Li}_n(1-i)+(-1)^noperatorname{Li}_nleft(frac{1+i}2right)?$$
I have found the following result manually:
$$L_1=-frac12pi i+lnfrac{1-i}2=-frac34pi i-frac12ln2$$
$$L_2=frac1{16}pi^2-ileft(frac14piln2+Gright)+frac5{96}pi^2-frac18ln^22+ileft(G-frac18piln2right)\
=frac{11}{96}pi^2-frac18ln^22-ifrac38piln2$$
Something I have found by using Mathematica:
$$L_3=-frac{1}{48} ln^32+frac{11}{192} pi ^2 ln2+i left(-frac{7 pi ^3}{128}-frac{1}{32} 3 pi ln^22right)$$
$$L_4=frac{1313 pi ^4}{92160}-frac{1}{384} ln ^42+frac{11}{768} pi ^2 ln ^22+i left(-frac{1}{64} pi ln ^32-frac{7}{256} pi ^3 ln 2right)$$
It seems like there is a method that Mathematica knows to simplify $L_n$. What is the method?
calculus polylogarithm
$endgroup$
add a comment |
$begingroup$
How can we calculate $$L_n=operatorname{Li}_n(1-i)+(-1)^noperatorname{Li}_nleft(frac{1+i}2right)?$$
I have found the following result manually:
$$L_1=-frac12pi i+lnfrac{1-i}2=-frac34pi i-frac12ln2$$
$$L_2=frac1{16}pi^2-ileft(frac14piln2+Gright)+frac5{96}pi^2-frac18ln^22+ileft(G-frac18piln2right)\
=frac{11}{96}pi^2-frac18ln^22-ifrac38piln2$$
Something I have found by using Mathematica:
$$L_3=-frac{1}{48} ln^32+frac{11}{192} pi ^2 ln2+i left(-frac{7 pi ^3}{128}-frac{1}{32} 3 pi ln^22right)$$
$$L_4=frac{1313 pi ^4}{92160}-frac{1}{384} ln ^42+frac{11}{768} pi ^2 ln ^22+i left(-frac{1}{64} pi ln ^32-frac{7}{256} pi ^3 ln 2right)$$
It seems like there is a method that Mathematica knows to simplify $L_n$. What is the method?
calculus polylogarithm
$endgroup$
How can we calculate $$L_n=operatorname{Li}_n(1-i)+(-1)^noperatorname{Li}_nleft(frac{1+i}2right)?$$
I have found the following result manually:
$$L_1=-frac12pi i+lnfrac{1-i}2=-frac34pi i-frac12ln2$$
$$L_2=frac1{16}pi^2-ileft(frac14piln2+Gright)+frac5{96}pi^2-frac18ln^22+ileft(G-frac18piln2right)\
=frac{11}{96}pi^2-frac18ln^22-ifrac38piln2$$
Something I have found by using Mathematica:
$$L_3=-frac{1}{48} ln^32+frac{11}{192} pi ^2 ln2+i left(-frac{7 pi ^3}{128}-frac{1}{32} 3 pi ln^22right)$$
$$L_4=frac{1313 pi ^4}{92160}-frac{1}{384} ln ^42+frac{11}{768} pi ^2 ln ^22+i left(-frac{1}{64} pi ln ^32-frac{7}{256} pi ^3 ln 2right)$$
It seems like there is a method that Mathematica knows to simplify $L_n$. What is the method?
calculus polylogarithm
calculus polylogarithm
asked Jan 7 at 9:12


Kemono ChenKemono Chen
3,0521743
3,0521743
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that $(1-i)^{-1}=(1+i)/2$ and from here, $${rm{Li}}_n(1-i)=(-1)^{n-1}{rm{Li}}_nleft(frac{1+i}2right)-frac{(2pi i)^n}{n!}B_nleft(frac{ln(i-1)}{2pi i}+frac12right)$$ and since $(-1)^{n-1}=-(-1)^n$, $$L_n=-frac{(2pi i)^n}{n!}B_nleft(frac{frac{ln2}2+frac{3ipi}4}{2pi i}+frac12right)=-frac{(2pi i)^n}{n!}B_nleft(frac78-frac{ln2}{4pi}iright)$$ where $B_n(cdot)$ is the Bernoulli polynomial from which you get an $n$th degree complex polynomial.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064802%2fpolylog-property-operatornameli-n1-i-1n-operatornameli-n-frac1i2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $(1-i)^{-1}=(1+i)/2$ and from here, $${rm{Li}}_n(1-i)=(-1)^{n-1}{rm{Li}}_nleft(frac{1+i}2right)-frac{(2pi i)^n}{n!}B_nleft(frac{ln(i-1)}{2pi i}+frac12right)$$ and since $(-1)^{n-1}=-(-1)^n$, $$L_n=-frac{(2pi i)^n}{n!}B_nleft(frac{frac{ln2}2+frac{3ipi}4}{2pi i}+frac12right)=-frac{(2pi i)^n}{n!}B_nleft(frac78-frac{ln2}{4pi}iright)$$ where $B_n(cdot)$ is the Bernoulli polynomial from which you get an $n$th degree complex polynomial.
$endgroup$
add a comment |
$begingroup$
Note that $(1-i)^{-1}=(1+i)/2$ and from here, $${rm{Li}}_n(1-i)=(-1)^{n-1}{rm{Li}}_nleft(frac{1+i}2right)-frac{(2pi i)^n}{n!}B_nleft(frac{ln(i-1)}{2pi i}+frac12right)$$ and since $(-1)^{n-1}=-(-1)^n$, $$L_n=-frac{(2pi i)^n}{n!}B_nleft(frac{frac{ln2}2+frac{3ipi}4}{2pi i}+frac12right)=-frac{(2pi i)^n}{n!}B_nleft(frac78-frac{ln2}{4pi}iright)$$ where $B_n(cdot)$ is the Bernoulli polynomial from which you get an $n$th degree complex polynomial.
$endgroup$
add a comment |
$begingroup$
Note that $(1-i)^{-1}=(1+i)/2$ and from here, $${rm{Li}}_n(1-i)=(-1)^{n-1}{rm{Li}}_nleft(frac{1+i}2right)-frac{(2pi i)^n}{n!}B_nleft(frac{ln(i-1)}{2pi i}+frac12right)$$ and since $(-1)^{n-1}=-(-1)^n$, $$L_n=-frac{(2pi i)^n}{n!}B_nleft(frac{frac{ln2}2+frac{3ipi}4}{2pi i}+frac12right)=-frac{(2pi i)^n}{n!}B_nleft(frac78-frac{ln2}{4pi}iright)$$ where $B_n(cdot)$ is the Bernoulli polynomial from which you get an $n$th degree complex polynomial.
$endgroup$
Note that $(1-i)^{-1}=(1+i)/2$ and from here, $${rm{Li}}_n(1-i)=(-1)^{n-1}{rm{Li}}_nleft(frac{1+i}2right)-frac{(2pi i)^n}{n!}B_nleft(frac{ln(i-1)}{2pi i}+frac12right)$$ and since $(-1)^{n-1}=-(-1)^n$, $$L_n=-frac{(2pi i)^n}{n!}B_nleft(frac{frac{ln2}2+frac{3ipi}4}{2pi i}+frac12right)=-frac{(2pi i)^n}{n!}B_nleft(frac78-frac{ln2}{4pi}iright)$$ where $B_n(cdot)$ is the Bernoulli polynomial from which you get an $n$th degree complex polynomial.
answered Jan 7 at 9:49
TheSimpliFireTheSimpliFire
12.4k62460
12.4k62460
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064802%2fpolylog-property-operatornameli-n1-i-1n-operatornameli-n-frac1i2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown