An AMM-like integral $int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx$
How can we evaluate $$I=int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx=0?$$
I tried substitution $x=frac{1-t}{1+t}$ and got
$$I=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} arctan frac{t-1}{t+1}}{t^2-1}dt\
=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} (arctan t-fracpi4)}{t^2-1}dt$$
I'm able to evaluate $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt$$
But I have no idea where to start with the rest one.
calculus integration definite-integrals
add a comment |
How can we evaluate $$I=int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx=0?$$
I tried substitution $x=frac{1-t}{1+t}$ and got
$$I=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} arctan frac{t-1}{t+1}}{t^2-1}dt\
=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} (arctan t-fracpi4)}{t^2-1}dt$$
I'm able to evaluate $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt$$
But I have no idea where to start with the rest one.
calculus integration definite-integrals
Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 '18 at 20:38
@klirk Just an interest.
– Kemono Chen
Nov 21 '18 at 0:18
$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
Nov 21 '18 at 11:00
add a comment |
How can we evaluate $$I=int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx=0?$$
I tried substitution $x=frac{1-t}{1+t}$ and got
$$I=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} arctan frac{t-1}{t+1}}{t^2-1}dt\
=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} (arctan t-fracpi4)}{t^2-1}dt$$
I'm able to evaluate $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt$$
But I have no idea where to start with the rest one.
calculus integration definite-integrals
How can we evaluate $$I=int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx=0?$$
I tried substitution $x=frac{1-t}{1+t}$ and got
$$I=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} arctan frac{t-1}{t+1}}{t^2-1}dt\
=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} (arctan t-fracpi4)}{t^2-1}dt$$
I'm able to evaluate $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt$$
But I have no idea where to start with the rest one.
calculus integration definite-integrals
calculus integration definite-integrals
asked Nov 20 '18 at 9:20
Kemono Chen
2,569437
2,569437
Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 '18 at 20:38
@klirk Just an interest.
– Kemono Chen
Nov 21 '18 at 0:18
$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
Nov 21 '18 at 11:00
add a comment |
Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 '18 at 20:38
@klirk Just an interest.
– Kemono Chen
Nov 21 '18 at 0:18
$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
Nov 21 '18 at 11:00
Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 '18 at 20:38
Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 '18 at 20:38
@klirk Just an interest.
– Kemono Chen
Nov 21 '18 at 0:18
@klirk Just an interest.
– Kemono Chen
Nov 21 '18 at 0:18
$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
Nov 21 '18 at 11:00
$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
Nov 21 '18 at 11:00
add a comment |
2 Answers
2
active
oldest
votes
$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}
We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}dy=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}
begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}
And the result is proved.
1
(+1) Very neat.
– nospoon
Nov 21 '18 at 12:24
add a comment |
Through the dilogarithm/trilogarithm machinery it can be shown that
$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
Nov 21 '18 at 3:02
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006106%2fan-amm-like-integral-int-01-frac-arctan-xx-ln-frac1x231x2dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}
We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}dy=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}
begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}
And the result is proved.
1
(+1) Very neat.
– nospoon
Nov 21 '18 at 12:24
add a comment |
$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}
We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}dy=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}
begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}
And the result is proved.
1
(+1) Very neat.
– nospoon
Nov 21 '18 at 12:24
add a comment |
$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}
We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}dy=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}
begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}
And the result is proved.
$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}
We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}dy=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}
begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}
And the result is proved.
edited Dec 23 '18 at 21:09
answered Nov 21 '18 at 11:52
Zacky
4,9061750
4,9061750
1
(+1) Very neat.
– nospoon
Nov 21 '18 at 12:24
add a comment |
1
(+1) Very neat.
– nospoon
Nov 21 '18 at 12:24
1
1
(+1) Very neat.
– nospoon
Nov 21 '18 at 12:24
(+1) Very neat.
– nospoon
Nov 21 '18 at 12:24
add a comment |
Through the dilogarithm/trilogarithm machinery it can be shown that
$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
Nov 21 '18 at 3:02
add a comment |
Through the dilogarithm/trilogarithm machinery it can be shown that
$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
Nov 21 '18 at 3:02
add a comment |
Through the dilogarithm/trilogarithm machinery it can be shown that
$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.
Through the dilogarithm/trilogarithm machinery it can be shown that
$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.
answered Nov 20 '18 at 20:20
Jack D'Aurizio
286k33279656
286k33279656
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
Nov 21 '18 at 3:02
add a comment |
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
Nov 21 '18 at 3:02
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
Nov 21 '18 at 3:02
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
Nov 21 '18 at 3:02
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006106%2fan-amm-like-integral-int-01-frac-arctan-xx-ln-frac1x231x2dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 '18 at 20:38
@klirk Just an interest.
– Kemono Chen
Nov 21 '18 at 0:18
$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
Nov 21 '18 at 11:00