Inverse function of a product space
$begingroup$
I want to prove the continuity of a function $f: (X_1,tau_1) times (X_2,tau_2) rightarrow (X'_1,tau'_1) times (X'_2,tau'_2)$ where $f(x,y) = (f_1(x),f_2(y))$ and my question is:
What is $f^{-1}(bigcuplimits_{lambda_1,lambda_2 in Lambda} U_{lambda_1} times U_{lambda_2})$? Is it $(f_1^{-1}(bigcuplimits_{lambda1 in Lambda}U_{lambda_1}) times (f_2^{-1}bigcuplimits_{lambda_2 in Lambda} U_{lambda_2}))$ ?
EDIT:
I believe that the answer to my question is $(f_1^{-1}(bigcuplimits_ {lambda_1inLambda}U_{lambda_1})times X_2) cap (X_1 times f_2^{-1}(bigcuplimits_{lambda_2inLambda}U_{lambda_2}))$
Am i correct?
Bonus question: This is the first time I'm writting something in LaTeX, and it's honestly really cool. However, how can I write something like U_lambda_1, instead of having to write U_lambda'? Also, what is the code for uppercase Tau? Tau doesn't work
general-topology functions elementary-set-theory continuity products
$endgroup$
add a comment |
$begingroup$
I want to prove the continuity of a function $f: (X_1,tau_1) times (X_2,tau_2) rightarrow (X'_1,tau'_1) times (X'_2,tau'_2)$ where $f(x,y) = (f_1(x),f_2(y))$ and my question is:
What is $f^{-1}(bigcuplimits_{lambda_1,lambda_2 in Lambda} U_{lambda_1} times U_{lambda_2})$? Is it $(f_1^{-1}(bigcuplimits_{lambda1 in Lambda}U_{lambda_1}) times (f_2^{-1}bigcuplimits_{lambda_2 in Lambda} U_{lambda_2}))$ ?
EDIT:
I believe that the answer to my question is $(f_1^{-1}(bigcuplimits_ {lambda_1inLambda}U_{lambda_1})times X_2) cap (X_1 times f_2^{-1}(bigcuplimits_{lambda_2inLambda}U_{lambda_2}))$
Am i correct?
Bonus question: This is the first time I'm writting something in LaTeX, and it's honestly really cool. However, how can I write something like U_lambda_1, instead of having to write U_lambda'? Also, what is the code for uppercase Tau? Tau doesn't work
general-topology functions elementary-set-theory continuity products
$endgroup$
$begingroup$
You can do a double-subscript (with braces appropriately) such as $U_{lambda_1}$. No your inverse is not like that. For a function $f:Arightarrow B$ the inverse $f^{-1}(C)$ (where $C subseteq B$) is the set of all $a in A$ such that $f(a) in C$. You cannot take individual inverses of each dimension. For example suppose your function $f$ maps to either $(1,1)$ or $(2,2)$ depending on the input. Then $f^{-1}({(1,2)})$ is empty but your individual-dimension inverse $f_1^{-1}({1}) times f_2^{-1}({2})$ is not empty.
$endgroup$
– Michael
Jan 22 at 0:52
$begingroup$
@Michael yeah, I figured it was wrong, thank you :) what is it, then?
$endgroup$
– J. Dionisio
Jan 22 at 9:49
add a comment |
$begingroup$
I want to prove the continuity of a function $f: (X_1,tau_1) times (X_2,tau_2) rightarrow (X'_1,tau'_1) times (X'_2,tau'_2)$ where $f(x,y) = (f_1(x),f_2(y))$ and my question is:
What is $f^{-1}(bigcuplimits_{lambda_1,lambda_2 in Lambda} U_{lambda_1} times U_{lambda_2})$? Is it $(f_1^{-1}(bigcuplimits_{lambda1 in Lambda}U_{lambda_1}) times (f_2^{-1}bigcuplimits_{lambda_2 in Lambda} U_{lambda_2}))$ ?
EDIT:
I believe that the answer to my question is $(f_1^{-1}(bigcuplimits_ {lambda_1inLambda}U_{lambda_1})times X_2) cap (X_1 times f_2^{-1}(bigcuplimits_{lambda_2inLambda}U_{lambda_2}))$
Am i correct?
Bonus question: This is the first time I'm writting something in LaTeX, and it's honestly really cool. However, how can I write something like U_lambda_1, instead of having to write U_lambda'? Also, what is the code for uppercase Tau? Tau doesn't work
general-topology functions elementary-set-theory continuity products
$endgroup$
I want to prove the continuity of a function $f: (X_1,tau_1) times (X_2,tau_2) rightarrow (X'_1,tau'_1) times (X'_2,tau'_2)$ where $f(x,y) = (f_1(x),f_2(y))$ and my question is:
What is $f^{-1}(bigcuplimits_{lambda_1,lambda_2 in Lambda} U_{lambda_1} times U_{lambda_2})$? Is it $(f_1^{-1}(bigcuplimits_{lambda1 in Lambda}U_{lambda_1}) times (f_2^{-1}bigcuplimits_{lambda_2 in Lambda} U_{lambda_2}))$ ?
EDIT:
I believe that the answer to my question is $(f_1^{-1}(bigcuplimits_ {lambda_1inLambda}U_{lambda_1})times X_2) cap (X_1 times f_2^{-1}(bigcuplimits_{lambda_2inLambda}U_{lambda_2}))$
Am i correct?
Bonus question: This is the first time I'm writting something in LaTeX, and it's honestly really cool. However, how can I write something like U_lambda_1, instead of having to write U_lambda'? Also, what is the code for uppercase Tau? Tau doesn't work
general-topology functions elementary-set-theory continuity products
general-topology functions elementary-set-theory continuity products
edited Jan 23 at 17:49
J. Dionisio
asked Jan 22 at 0:04
J. DionisioJ. Dionisio
11011
11011
$begingroup$
You can do a double-subscript (with braces appropriately) such as $U_{lambda_1}$. No your inverse is not like that. For a function $f:Arightarrow B$ the inverse $f^{-1}(C)$ (where $C subseteq B$) is the set of all $a in A$ such that $f(a) in C$. You cannot take individual inverses of each dimension. For example suppose your function $f$ maps to either $(1,1)$ or $(2,2)$ depending on the input. Then $f^{-1}({(1,2)})$ is empty but your individual-dimension inverse $f_1^{-1}({1}) times f_2^{-1}({2})$ is not empty.
$endgroup$
– Michael
Jan 22 at 0:52
$begingroup$
@Michael yeah, I figured it was wrong, thank you :) what is it, then?
$endgroup$
– J. Dionisio
Jan 22 at 9:49
add a comment |
$begingroup$
You can do a double-subscript (with braces appropriately) such as $U_{lambda_1}$. No your inverse is not like that. For a function $f:Arightarrow B$ the inverse $f^{-1}(C)$ (where $C subseteq B$) is the set of all $a in A$ such that $f(a) in C$. You cannot take individual inverses of each dimension. For example suppose your function $f$ maps to either $(1,1)$ or $(2,2)$ depending on the input. Then $f^{-1}({(1,2)})$ is empty but your individual-dimension inverse $f_1^{-1}({1}) times f_2^{-1}({2})$ is not empty.
$endgroup$
– Michael
Jan 22 at 0:52
$begingroup$
@Michael yeah, I figured it was wrong, thank you :) what is it, then?
$endgroup$
– J. Dionisio
Jan 22 at 9:49
$begingroup$
You can do a double-subscript (with braces appropriately) such as $U_{lambda_1}$. No your inverse is not like that. For a function $f:Arightarrow B$ the inverse $f^{-1}(C)$ (where $C subseteq B$) is the set of all $a in A$ such that $f(a) in C$. You cannot take individual inverses of each dimension. For example suppose your function $f$ maps to either $(1,1)$ or $(2,2)$ depending on the input. Then $f^{-1}({(1,2)})$ is empty but your individual-dimension inverse $f_1^{-1}({1}) times f_2^{-1}({2})$ is not empty.
$endgroup$
– Michael
Jan 22 at 0:52
$begingroup$
You can do a double-subscript (with braces appropriately) such as $U_{lambda_1}$. No your inverse is not like that. For a function $f:Arightarrow B$ the inverse $f^{-1}(C)$ (where $C subseteq B$) is the set of all $a in A$ such that $f(a) in C$. You cannot take individual inverses of each dimension. For example suppose your function $f$ maps to either $(1,1)$ or $(2,2)$ depending on the input. Then $f^{-1}({(1,2)})$ is empty but your individual-dimension inverse $f_1^{-1}({1}) times f_2^{-1}({2})$ is not empty.
$endgroup$
– Michael
Jan 22 at 0:52
$begingroup$
@Michael yeah, I figured it was wrong, thank you :) what is it, then?
$endgroup$
– J. Dionisio
Jan 22 at 9:49
$begingroup$
@Michael yeah, I figured it was wrong, thank you :) what is it, then?
$endgroup$
– J. Dionisio
Jan 22 at 9:49
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$f^{-1}left(bigcuplimits_{lambda_1,lambda_2 in Lambda} U_{lambda_1} times U_{lambda_2}right)= bigcuplimits_{lambda_1,lambda_2 in Lambda} f^{-1}left(U_{lambda_1} times U_{lambda_2}right)=
bigcuplimits_{lambda_1,lambda_2 in Lambda} f_1^{-1} left(U_{lambda_1}right) times f_2^{-1}left(U_{lambda_2}right).$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082583%2finverse-function-of-a-product-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$f^{-1}left(bigcuplimits_{lambda_1,lambda_2 in Lambda} U_{lambda_1} times U_{lambda_2}right)= bigcuplimits_{lambda_1,lambda_2 in Lambda} f^{-1}left(U_{lambda_1} times U_{lambda_2}right)=
bigcuplimits_{lambda_1,lambda_2 in Lambda} f_1^{-1} left(U_{lambda_1}right) times f_2^{-1}left(U_{lambda_2}right).$$
$endgroup$
add a comment |
$begingroup$
$$f^{-1}left(bigcuplimits_{lambda_1,lambda_2 in Lambda} U_{lambda_1} times U_{lambda_2}right)= bigcuplimits_{lambda_1,lambda_2 in Lambda} f^{-1}left(U_{lambda_1} times U_{lambda_2}right)=
bigcuplimits_{lambda_1,lambda_2 in Lambda} f_1^{-1} left(U_{lambda_1}right) times f_2^{-1}left(U_{lambda_2}right).$$
$endgroup$
add a comment |
$begingroup$
$$f^{-1}left(bigcuplimits_{lambda_1,lambda_2 in Lambda} U_{lambda_1} times U_{lambda_2}right)= bigcuplimits_{lambda_1,lambda_2 in Lambda} f^{-1}left(U_{lambda_1} times U_{lambda_2}right)=
bigcuplimits_{lambda_1,lambda_2 in Lambda} f_1^{-1} left(U_{lambda_1}right) times f_2^{-1}left(U_{lambda_2}right).$$
$endgroup$
$$f^{-1}left(bigcuplimits_{lambda_1,lambda_2 in Lambda} U_{lambda_1} times U_{lambda_2}right)= bigcuplimits_{lambda_1,lambda_2 in Lambda} f^{-1}left(U_{lambda_1} times U_{lambda_2}right)=
bigcuplimits_{lambda_1,lambda_2 in Lambda} f_1^{-1} left(U_{lambda_1}right) times f_2^{-1}left(U_{lambda_2}right).$$
answered Mar 2 at 2:53


Alex RavskyAlex Ravsky
42.5k32383
42.5k32383
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082583%2finverse-function-of-a-product-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You can do a double-subscript (with braces appropriately) such as $U_{lambda_1}$. No your inverse is not like that. For a function $f:Arightarrow B$ the inverse $f^{-1}(C)$ (where $C subseteq B$) is the set of all $a in A$ such that $f(a) in C$. You cannot take individual inverses of each dimension. For example suppose your function $f$ maps to either $(1,1)$ or $(2,2)$ depending on the input. Then $f^{-1}({(1,2)})$ is empty but your individual-dimension inverse $f_1^{-1}({1}) times f_2^{-1}({2})$ is not empty.
$endgroup$
– Michael
Jan 22 at 0:52
$begingroup$
@Michael yeah, I figured it was wrong, thank you :) what is it, then?
$endgroup$
– J. Dionisio
Jan 22 at 9:49