Solving $int frac1{cos x}mathrm dx$ [duplicate]
$begingroup$
This question already has an answer here:
How to integrate $int frac{1}{cos(x)},mathrm dx$
7 answers
I'm trying to solve the following integral:
$$int frac1{cos x}mathrm dx$$
I know that $int cos xmathrm dx$ = sin x, but I don't know how to proceed with $frac1{cos x}$.
calculus indefinite-integrals
$endgroup$
marked as duplicate by amWhy, Hans Lundmark, Abcd, metamorphy, Community♦ Jan 5 at 18:41
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
How to integrate $int frac{1}{cos(x)},mathrm dx$
7 answers
I'm trying to solve the following integral:
$$int frac1{cos x}mathrm dx$$
I know that $int cos xmathrm dx$ = sin x, but I don't know how to proceed with $frac1{cos x}$.
calculus indefinite-integrals
$endgroup$
marked as duplicate by amWhy, Hans Lundmark, Abcd, metamorphy, Community♦ Jan 5 at 18:41
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
3
$begingroup$
Hint: multiply by $frac{cos x}{cos x}$ and use that $cos^2x=1-sin^2x$. Then perform a substitution to turn it into an integral of a rational function.
$endgroup$
– greelious
Jan 5 at 16:43
add a comment |
$begingroup$
This question already has an answer here:
How to integrate $int frac{1}{cos(x)},mathrm dx$
7 answers
I'm trying to solve the following integral:
$$int frac1{cos x}mathrm dx$$
I know that $int cos xmathrm dx$ = sin x, but I don't know how to proceed with $frac1{cos x}$.
calculus indefinite-integrals
$endgroup$
This question already has an answer here:
How to integrate $int frac{1}{cos(x)},mathrm dx$
7 answers
I'm trying to solve the following integral:
$$int frac1{cos x}mathrm dx$$
I know that $int cos xmathrm dx$ = sin x, but I don't know how to proceed with $frac1{cos x}$.
This question already has an answer here:
How to integrate $int frac{1}{cos(x)},mathrm dx$
7 answers
calculus indefinite-integrals
calculus indefinite-integrals
edited Jan 5 at 16:44
mrtaurho
4,13621234
4,13621234
asked Jan 5 at 16:39
El BryanEl Bryan
417
417
marked as duplicate by amWhy, Hans Lundmark, Abcd, metamorphy, Community♦ Jan 5 at 18:41
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by amWhy, Hans Lundmark, Abcd, metamorphy, Community♦ Jan 5 at 18:41
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
3
$begingroup$
Hint: multiply by $frac{cos x}{cos x}$ and use that $cos^2x=1-sin^2x$. Then perform a substitution to turn it into an integral of a rational function.
$endgroup$
– greelious
Jan 5 at 16:43
add a comment |
3
$begingroup$
Hint: multiply by $frac{cos x}{cos x}$ and use that $cos^2x=1-sin^2x$. Then perform a substitution to turn it into an integral of a rational function.
$endgroup$
– greelious
Jan 5 at 16:43
3
3
$begingroup$
Hint: multiply by $frac{cos x}{cos x}$ and use that $cos^2x=1-sin^2x$. Then perform a substitution to turn it into an integral of a rational function.
$endgroup$
– greelious
Jan 5 at 16:43
$begingroup$
Hint: multiply by $frac{cos x}{cos x}$ and use that $cos^2x=1-sin^2x$. Then perform a substitution to turn it into an integral of a rational function.
$endgroup$
– greelious
Jan 5 at 16:43
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$intfrac{dx}{cos x}=intfrac{cos x}{1-sin^2x}dx=frac12intcos xleft(frac1{1-sin x}+frac1{1+sin x}right),dx=$$
$$frac12left[-intfrac{d(1-sin x)}{1-sin x}+intfrac{d(1+sin x)}{1+sin x}right]=frac12logfrac{1+sin x}{1-sin x}+C$$
$endgroup$
add a comment |
$begingroup$
$$int sec(x)dx$$Let $u=tan(frac{x}{2})$
$$int sec(x)dx=2intfrac{du}{1-u^2}$$ Use partial fractions to get $$int sec(x)dx=intfrac{du}{1-u}-intfrac{du}{1+u}=lnleft(frac{1-u}{1+u}right)+C=lnleft(frac{1-tan(frac{x}{2})}{1+tan(frac{x}{2})}right)+C$$
$endgroup$
add a comment |
$begingroup$
Utilizing the given hint from greelious we get the following
$$I=int frac{mathrm dx}{cos x}=int frac{cos x}{cos^2 x}mathrm dx=int frac{cos x}{1-sin^2 x}mathrm dx$$
Now by the substitution $y=sin x$ we further get
$$I=int frac{cos x}{1-sin^2 x}mathrm dxstackrel{y=sin x}{=}int frac{mathrm dy}{1-y^2}$$
This on can be done via partial fraction decomposition which gives us
$$I=int frac{mathrm dy}{1-y^2}=frac12int left(frac1{1+y}+frac1{1-y}right)mathrm dy=frac12logleft(frac{1+y}{1-y}right)+c$$
And now resubstitute $y=sin(x)$ gives us
$$I=frac12logleft(frac{1+y}{1-y}right)+c=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
$$therefore~I=intfrac{mathrm dx}{cos x}=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
Moreover we can show that this solution equals the elegant one given by Rhys Hughes
$$begin{align*}
&color{red}{frac12logleft(frac{1+sin x}{1-sin x}right)}=logleft(sqrt{frac{1+cos left(x-fracpi2right)}{1-cosleft(x-fracpi2right)}}right)=logleft(cotleft(frac{x-fracpi2}{2}right)right)\&=logleft(cotleft(frac x2-fracpi4right)right)
=logleft(frac{1+cotfrac x2}{1-cot frac x2}right)=logleft(frac{left(cosfrac x2+sinfrac x2right)^2}{cos^2 frac x2-sin^2frac x2}right)\&=logleft(frac{1+2sinfrac x2cosfrac x2}{cos x}right)=logleft(frac{1+sin x}{cos x}right)=color{red}{log(sec x+tan x)}
end{align*}$$
$endgroup$
add a comment |
$begingroup$
A method I've seen is:
$$int sec(x)frac{sec x+tan x}{sec x+tan x}dx=intfrac{(sec x+tan x)'}{sec x+tan x}dx=ln|sec x+tan x|+C$$
$endgroup$
2
$begingroup$
Whoops. Added, cheers.
$endgroup$
– Rhys Hughes
Jan 5 at 18:29
add a comment |
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$intfrac{dx}{cos x}=intfrac{cos x}{1-sin^2x}dx=frac12intcos xleft(frac1{1-sin x}+frac1{1+sin x}right),dx=$$
$$frac12left[-intfrac{d(1-sin x)}{1-sin x}+intfrac{d(1+sin x)}{1+sin x}right]=frac12logfrac{1+sin x}{1-sin x}+C$$
$endgroup$
add a comment |
$begingroup$
$$intfrac{dx}{cos x}=intfrac{cos x}{1-sin^2x}dx=frac12intcos xleft(frac1{1-sin x}+frac1{1+sin x}right),dx=$$
$$frac12left[-intfrac{d(1-sin x)}{1-sin x}+intfrac{d(1+sin x)}{1+sin x}right]=frac12logfrac{1+sin x}{1-sin x}+C$$
$endgroup$
add a comment |
$begingroup$
$$intfrac{dx}{cos x}=intfrac{cos x}{1-sin^2x}dx=frac12intcos xleft(frac1{1-sin x}+frac1{1+sin x}right),dx=$$
$$frac12left[-intfrac{d(1-sin x)}{1-sin x}+intfrac{d(1+sin x)}{1+sin x}right]=frac12logfrac{1+sin x}{1-sin x}+C$$
$endgroup$
$$intfrac{dx}{cos x}=intfrac{cos x}{1-sin^2x}dx=frac12intcos xleft(frac1{1-sin x}+frac1{1+sin x}right),dx=$$
$$frac12left[-intfrac{d(1-sin x)}{1-sin x}+intfrac{d(1+sin x)}{1+sin x}right]=frac12logfrac{1+sin x}{1-sin x}+C$$
answered Jan 5 at 16:49
DonAntonioDonAntonio
178k1492227
178k1492227
add a comment |
add a comment |
$begingroup$
$$int sec(x)dx$$Let $u=tan(frac{x}{2})$
$$int sec(x)dx=2intfrac{du}{1-u^2}$$ Use partial fractions to get $$int sec(x)dx=intfrac{du}{1-u}-intfrac{du}{1+u}=lnleft(frac{1-u}{1+u}right)+C=lnleft(frac{1-tan(frac{x}{2})}{1+tan(frac{x}{2})}right)+C$$
$endgroup$
add a comment |
$begingroup$
$$int sec(x)dx$$Let $u=tan(frac{x}{2})$
$$int sec(x)dx=2intfrac{du}{1-u^2}$$ Use partial fractions to get $$int sec(x)dx=intfrac{du}{1-u}-intfrac{du}{1+u}=lnleft(frac{1-u}{1+u}right)+C=lnleft(frac{1-tan(frac{x}{2})}{1+tan(frac{x}{2})}right)+C$$
$endgroup$
add a comment |
$begingroup$
$$int sec(x)dx$$Let $u=tan(frac{x}{2})$
$$int sec(x)dx=2intfrac{du}{1-u^2}$$ Use partial fractions to get $$int sec(x)dx=intfrac{du}{1-u}-intfrac{du}{1+u}=lnleft(frac{1-u}{1+u}right)+C=lnleft(frac{1-tan(frac{x}{2})}{1+tan(frac{x}{2})}right)+C$$
$endgroup$
$$int sec(x)dx$$Let $u=tan(frac{x}{2})$
$$int sec(x)dx=2intfrac{du}{1-u^2}$$ Use partial fractions to get $$int sec(x)dx=intfrac{du}{1-u}-intfrac{du}{1+u}=lnleft(frac{1-u}{1+u}right)+C=lnleft(frac{1-tan(frac{x}{2})}{1+tan(frac{x}{2})}right)+C$$
edited Jan 5 at 17:26
answered Jan 5 at 16:46
aledenaleden
2,037511
2,037511
add a comment |
add a comment |
$begingroup$
Utilizing the given hint from greelious we get the following
$$I=int frac{mathrm dx}{cos x}=int frac{cos x}{cos^2 x}mathrm dx=int frac{cos x}{1-sin^2 x}mathrm dx$$
Now by the substitution $y=sin x$ we further get
$$I=int frac{cos x}{1-sin^2 x}mathrm dxstackrel{y=sin x}{=}int frac{mathrm dy}{1-y^2}$$
This on can be done via partial fraction decomposition which gives us
$$I=int frac{mathrm dy}{1-y^2}=frac12int left(frac1{1+y}+frac1{1-y}right)mathrm dy=frac12logleft(frac{1+y}{1-y}right)+c$$
And now resubstitute $y=sin(x)$ gives us
$$I=frac12logleft(frac{1+y}{1-y}right)+c=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
$$therefore~I=intfrac{mathrm dx}{cos x}=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
Moreover we can show that this solution equals the elegant one given by Rhys Hughes
$$begin{align*}
&color{red}{frac12logleft(frac{1+sin x}{1-sin x}right)}=logleft(sqrt{frac{1+cos left(x-fracpi2right)}{1-cosleft(x-fracpi2right)}}right)=logleft(cotleft(frac{x-fracpi2}{2}right)right)\&=logleft(cotleft(frac x2-fracpi4right)right)
=logleft(frac{1+cotfrac x2}{1-cot frac x2}right)=logleft(frac{left(cosfrac x2+sinfrac x2right)^2}{cos^2 frac x2-sin^2frac x2}right)\&=logleft(frac{1+2sinfrac x2cosfrac x2}{cos x}right)=logleft(frac{1+sin x}{cos x}right)=color{red}{log(sec x+tan x)}
end{align*}$$
$endgroup$
add a comment |
$begingroup$
Utilizing the given hint from greelious we get the following
$$I=int frac{mathrm dx}{cos x}=int frac{cos x}{cos^2 x}mathrm dx=int frac{cos x}{1-sin^2 x}mathrm dx$$
Now by the substitution $y=sin x$ we further get
$$I=int frac{cos x}{1-sin^2 x}mathrm dxstackrel{y=sin x}{=}int frac{mathrm dy}{1-y^2}$$
This on can be done via partial fraction decomposition which gives us
$$I=int frac{mathrm dy}{1-y^2}=frac12int left(frac1{1+y}+frac1{1-y}right)mathrm dy=frac12logleft(frac{1+y}{1-y}right)+c$$
And now resubstitute $y=sin(x)$ gives us
$$I=frac12logleft(frac{1+y}{1-y}right)+c=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
$$therefore~I=intfrac{mathrm dx}{cos x}=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
Moreover we can show that this solution equals the elegant one given by Rhys Hughes
$$begin{align*}
&color{red}{frac12logleft(frac{1+sin x}{1-sin x}right)}=logleft(sqrt{frac{1+cos left(x-fracpi2right)}{1-cosleft(x-fracpi2right)}}right)=logleft(cotleft(frac{x-fracpi2}{2}right)right)\&=logleft(cotleft(frac x2-fracpi4right)right)
=logleft(frac{1+cotfrac x2}{1-cot frac x2}right)=logleft(frac{left(cosfrac x2+sinfrac x2right)^2}{cos^2 frac x2-sin^2frac x2}right)\&=logleft(frac{1+2sinfrac x2cosfrac x2}{cos x}right)=logleft(frac{1+sin x}{cos x}right)=color{red}{log(sec x+tan x)}
end{align*}$$
$endgroup$
add a comment |
$begingroup$
Utilizing the given hint from greelious we get the following
$$I=int frac{mathrm dx}{cos x}=int frac{cos x}{cos^2 x}mathrm dx=int frac{cos x}{1-sin^2 x}mathrm dx$$
Now by the substitution $y=sin x$ we further get
$$I=int frac{cos x}{1-sin^2 x}mathrm dxstackrel{y=sin x}{=}int frac{mathrm dy}{1-y^2}$$
This on can be done via partial fraction decomposition which gives us
$$I=int frac{mathrm dy}{1-y^2}=frac12int left(frac1{1+y}+frac1{1-y}right)mathrm dy=frac12logleft(frac{1+y}{1-y}right)+c$$
And now resubstitute $y=sin(x)$ gives us
$$I=frac12logleft(frac{1+y}{1-y}right)+c=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
$$therefore~I=intfrac{mathrm dx}{cos x}=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
Moreover we can show that this solution equals the elegant one given by Rhys Hughes
$$begin{align*}
&color{red}{frac12logleft(frac{1+sin x}{1-sin x}right)}=logleft(sqrt{frac{1+cos left(x-fracpi2right)}{1-cosleft(x-fracpi2right)}}right)=logleft(cotleft(frac{x-fracpi2}{2}right)right)\&=logleft(cotleft(frac x2-fracpi4right)right)
=logleft(frac{1+cotfrac x2}{1-cot frac x2}right)=logleft(frac{left(cosfrac x2+sinfrac x2right)^2}{cos^2 frac x2-sin^2frac x2}right)\&=logleft(frac{1+2sinfrac x2cosfrac x2}{cos x}right)=logleft(frac{1+sin x}{cos x}right)=color{red}{log(sec x+tan x)}
end{align*}$$
$endgroup$
Utilizing the given hint from greelious we get the following
$$I=int frac{mathrm dx}{cos x}=int frac{cos x}{cos^2 x}mathrm dx=int frac{cos x}{1-sin^2 x}mathrm dx$$
Now by the substitution $y=sin x$ we further get
$$I=int frac{cos x}{1-sin^2 x}mathrm dxstackrel{y=sin x}{=}int frac{mathrm dy}{1-y^2}$$
This on can be done via partial fraction decomposition which gives us
$$I=int frac{mathrm dy}{1-y^2}=frac12int left(frac1{1+y}+frac1{1-y}right)mathrm dy=frac12logleft(frac{1+y}{1-y}right)+c$$
And now resubstitute $y=sin(x)$ gives us
$$I=frac12logleft(frac{1+y}{1-y}right)+c=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
$$therefore~I=intfrac{mathrm dx}{cos x}=frac12logleft(frac{1+sin x}{1-sin x}right)+c$$
Moreover we can show that this solution equals the elegant one given by Rhys Hughes
$$begin{align*}
&color{red}{frac12logleft(frac{1+sin x}{1-sin x}right)}=logleft(sqrt{frac{1+cos left(x-fracpi2right)}{1-cosleft(x-fracpi2right)}}right)=logleft(cotleft(frac{x-fracpi2}{2}right)right)\&=logleft(cotleft(frac x2-fracpi4right)right)
=logleft(frac{1+cotfrac x2}{1-cot frac x2}right)=logleft(frac{left(cosfrac x2+sinfrac x2right)^2}{cos^2 frac x2-sin^2frac x2}right)\&=logleft(frac{1+2sinfrac x2cosfrac x2}{cos x}right)=logleft(frac{1+sin x}{cos x}right)=color{red}{log(sec x+tan x)}
end{align*}$$
edited Jan 9 at 9:33
answered Jan 5 at 16:54
mrtaurhomrtaurho
4,13621234
4,13621234
add a comment |
add a comment |
$begingroup$
A method I've seen is:
$$int sec(x)frac{sec x+tan x}{sec x+tan x}dx=intfrac{(sec x+tan x)'}{sec x+tan x}dx=ln|sec x+tan x|+C$$
$endgroup$
2
$begingroup$
Whoops. Added, cheers.
$endgroup$
– Rhys Hughes
Jan 5 at 18:29
add a comment |
$begingroup$
A method I've seen is:
$$int sec(x)frac{sec x+tan x}{sec x+tan x}dx=intfrac{(sec x+tan x)'}{sec x+tan x}dx=ln|sec x+tan x|+C$$
$endgroup$
2
$begingroup$
Whoops. Added, cheers.
$endgroup$
– Rhys Hughes
Jan 5 at 18:29
add a comment |
$begingroup$
A method I've seen is:
$$int sec(x)frac{sec x+tan x}{sec x+tan x}dx=intfrac{(sec x+tan x)'}{sec x+tan x}dx=ln|sec x+tan x|+C$$
$endgroup$
A method I've seen is:
$$int sec(x)frac{sec x+tan x}{sec x+tan x}dx=intfrac{(sec x+tan x)'}{sec x+tan x}dx=ln|sec x+tan x|+C$$
edited Jan 5 at 18:28
answered Jan 5 at 16:50


Rhys HughesRhys Hughes
5,9791529
5,9791529
2
$begingroup$
Whoops. Added, cheers.
$endgroup$
– Rhys Hughes
Jan 5 at 18:29
add a comment |
2
$begingroup$
Whoops. Added, cheers.
$endgroup$
– Rhys Hughes
Jan 5 at 18:29
2
2
$begingroup$
Whoops. Added, cheers.
$endgroup$
– Rhys Hughes
Jan 5 at 18:29
$begingroup$
Whoops. Added, cheers.
$endgroup$
– Rhys Hughes
Jan 5 at 18:29
add a comment |
3
$begingroup$
Hint: multiply by $frac{cos x}{cos x}$ and use that $cos^2x=1-sin^2x$. Then perform a substitution to turn it into an integral of a rational function.
$endgroup$
– greelious
Jan 5 at 16:43