Spark: Dataframe action really slow when upgraded from 2.1.0 to 2.2.1
I just upgraded spark 2.1.0 to spark 2.2.1. Has anyone seen extreme slow behavior on dataframe.filter(…).collect()
?.. specifically a collect
operation with filter
before. dataframe.collect
seems to run okay. However, dataframe.filter(…).collect()
takes forever. it contains only 2 records. and its on a unit test. When I go back to spark 2.1.0, its back to normal speed
I have looked at the thread dump and could not find an obvious cause. I have made an effort to make sure all the libraries I am using are also using Spark 2.2.1. Any suggestion would be greatly appreciated.
It seems to be stuck at this stacktrace
scala.collection.mutable.FlatHashTable$class.addEntry(FlatHashTable.scala:151)
scala.collection.mutable.HashSet.addEntry(HashSet.scala:40)
scala.collection.mutable.FlatHashTable$class.addElem(FlatHashTable.scala:142)
scala.collection.mutable.HashSet.addElem(HashSet.scala:40)
scala.collection.mutable.HashSet.$plus$eq(HashSet.scala:59)
scala.collection.mutable.HashSet.$plus$eq(HashSet.scala:40)
scala.collection.generic.Growable$$anonfun$$plus$plus$eq$1.apply(Growable.scala:59)
scala.collection.generic.Growable$$anonfun$$plus$plus$eq$1.apply(Growable.scala:59)
scala.collection.mutable.HashSet.foreach(HashSet.scala:78)
scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
scala.collection.mutable.AbstractSet.$plus$plus$eq(Set.scala:46)
scala.collection.mutable.HashSet.clone(HashSet.scala:83)
scala.collection.mutable.HashSet.clone(HashSet.scala:40)
org.apache.spark.sql.catalyst.expressions.ExpressionSet.$plus(ExpressionSet.scala:65)
org.apache.spark.sql.catalyst.expressions.ExpressionSet.$plus(ExpressionSet.scala:50)
scala.collection.SetLike$$anonfun$$plus$plus$1.apply(SetLike.scala:141)
scala.collection.SetLike$$anonfun$$plus$plus$1.apply(SetLike.scala:141)
scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
scala.collection.immutable.HashSet$HashSet1.foreach(HashSet.scala:316)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
scala.collection.AbstractTraversable.foldLeft(Traversable.scala:104)
scala.collection.TraversableOnce$class.$div$colon(TraversableOnce.scala:151)
scala.collection.AbstractTraversable.$div$colon(Traversable.scala:104)
scala.collection.SetLike$class.$plus$plus(SetLike.scala:141)
org.apache.spark.sql.catalyst.expressions.ExpressionSet.$plus$plus(ExpressionSet.scala:50)
org.apache.spark.sql.catalyst.plans.logical.UnaryNode$$anonfun$getAliasedConstraints$1.apply(LogicalPlan.scala:323)
org.apache.spark.sql.catalyst.plans.logical.UnaryNode$$anonfun$getAliasedConstraints$1.apply(LogicalPlan.scala:320)
scala.collection.immutable.List.foreach(List.scala:392)
org.apache.spark.sql.catalyst.plans.logical.UnaryNode.getAliasedConstraints(LogicalPlan.scala:320)
org.apache.spark.sql.catalyst.plans.logical.Project.validConstraints(basicLogicalOperators.scala:65)
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints$lzycompute(QueryPlan.scala:188) => holding Monitor(org.apache.spark.sql.catalyst.plans.logical.Aggregate@1129881457})
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints(QueryPlan.scala:188)
org.apache.spark.sql.catalyst.plans.logical.Aggregate.validConstraints(basicLogicalOperators.scala:555)
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints$lzycompute(QueryPlan.scala:188) => holding Monitor(org.apache.spark.sql.catalyst.plans.logical.Aggregate@1129881457})
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints(QueryPlan.scala:188)
org.apache.spark.sql.catalyst.plans.QueryPlan.getConstraints(QueryPlan.scala:196)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16$$anonfun$25.apply(Optimizer.scala:717)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16$$anonfun$25.apply(Optimizer.scala:716)
scala.collection.TraversableLike$$anonfun$partition$1.apply(TraversableLike.scala:314)
scala.collection.TraversableLike$$anonfun$partition$1.apply(TraversableLike.scala:314)
scala.collection.immutable.List.foreach(List.scala:392)
scala.collection.TraversableLike$class.partition(TraversableLike.scala:314)
scala.collection.AbstractTraversable.partition(Traversable.scala:104)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16.applyOrElse(Optimizer.scala:716)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16.applyOrElse(Optimizer.scala:705)
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266)
org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256)
org.apache.spark.sql.catalyst.optimizer.PruneFilters.apply(Optimizer.scala:705)
org.apache.spark.sql.catalyst.optimizer.PruneFilters.apply(Optimizer.scala:704)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:85)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:82)
scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
scala.collection.immutable.List.foldLeft(List.scala:84)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:82)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:74)
scala.collection.immutable.List.foreach(List.scala:392)
org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:74)
org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:78) => holding Monitor(org.apache.spark.sql.execution.QueryExecution@1193326176})
org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:78)
org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:84) => holding Monitor(org.apache.spark.sql.execution.QueryExecution@1193326176})
org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:80)
org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:89) => holding Monitor(org.apache.spark.sql.execution.QueryExecution@1193326176})
org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:89)
org.apache.spark.sql.Dataset.withAction(Dataset.scala:2837)
org.apache.spark.sql.Dataset.collect(Dataset.scala:2387)
java scala apache-spark
add a comment |
I just upgraded spark 2.1.0 to spark 2.2.1. Has anyone seen extreme slow behavior on dataframe.filter(…).collect()
?.. specifically a collect
operation with filter
before. dataframe.collect
seems to run okay. However, dataframe.filter(…).collect()
takes forever. it contains only 2 records. and its on a unit test. When I go back to spark 2.1.0, its back to normal speed
I have looked at the thread dump and could not find an obvious cause. I have made an effort to make sure all the libraries I am using are also using Spark 2.2.1. Any suggestion would be greatly appreciated.
It seems to be stuck at this stacktrace
scala.collection.mutable.FlatHashTable$class.addEntry(FlatHashTable.scala:151)
scala.collection.mutable.HashSet.addEntry(HashSet.scala:40)
scala.collection.mutable.FlatHashTable$class.addElem(FlatHashTable.scala:142)
scala.collection.mutable.HashSet.addElem(HashSet.scala:40)
scala.collection.mutable.HashSet.$plus$eq(HashSet.scala:59)
scala.collection.mutable.HashSet.$plus$eq(HashSet.scala:40)
scala.collection.generic.Growable$$anonfun$$plus$plus$eq$1.apply(Growable.scala:59)
scala.collection.generic.Growable$$anonfun$$plus$plus$eq$1.apply(Growable.scala:59)
scala.collection.mutable.HashSet.foreach(HashSet.scala:78)
scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
scala.collection.mutable.AbstractSet.$plus$plus$eq(Set.scala:46)
scala.collection.mutable.HashSet.clone(HashSet.scala:83)
scala.collection.mutable.HashSet.clone(HashSet.scala:40)
org.apache.spark.sql.catalyst.expressions.ExpressionSet.$plus(ExpressionSet.scala:65)
org.apache.spark.sql.catalyst.expressions.ExpressionSet.$plus(ExpressionSet.scala:50)
scala.collection.SetLike$$anonfun$$plus$plus$1.apply(SetLike.scala:141)
scala.collection.SetLike$$anonfun$$plus$plus$1.apply(SetLike.scala:141)
scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
scala.collection.immutable.HashSet$HashSet1.foreach(HashSet.scala:316)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
scala.collection.AbstractTraversable.foldLeft(Traversable.scala:104)
scala.collection.TraversableOnce$class.$div$colon(TraversableOnce.scala:151)
scala.collection.AbstractTraversable.$div$colon(Traversable.scala:104)
scala.collection.SetLike$class.$plus$plus(SetLike.scala:141)
org.apache.spark.sql.catalyst.expressions.ExpressionSet.$plus$plus(ExpressionSet.scala:50)
org.apache.spark.sql.catalyst.plans.logical.UnaryNode$$anonfun$getAliasedConstraints$1.apply(LogicalPlan.scala:323)
org.apache.spark.sql.catalyst.plans.logical.UnaryNode$$anonfun$getAliasedConstraints$1.apply(LogicalPlan.scala:320)
scala.collection.immutable.List.foreach(List.scala:392)
org.apache.spark.sql.catalyst.plans.logical.UnaryNode.getAliasedConstraints(LogicalPlan.scala:320)
org.apache.spark.sql.catalyst.plans.logical.Project.validConstraints(basicLogicalOperators.scala:65)
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints$lzycompute(QueryPlan.scala:188) => holding Monitor(org.apache.spark.sql.catalyst.plans.logical.Aggregate@1129881457})
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints(QueryPlan.scala:188)
org.apache.spark.sql.catalyst.plans.logical.Aggregate.validConstraints(basicLogicalOperators.scala:555)
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints$lzycompute(QueryPlan.scala:188) => holding Monitor(org.apache.spark.sql.catalyst.plans.logical.Aggregate@1129881457})
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints(QueryPlan.scala:188)
org.apache.spark.sql.catalyst.plans.QueryPlan.getConstraints(QueryPlan.scala:196)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16$$anonfun$25.apply(Optimizer.scala:717)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16$$anonfun$25.apply(Optimizer.scala:716)
scala.collection.TraversableLike$$anonfun$partition$1.apply(TraversableLike.scala:314)
scala.collection.TraversableLike$$anonfun$partition$1.apply(TraversableLike.scala:314)
scala.collection.immutable.List.foreach(List.scala:392)
scala.collection.TraversableLike$class.partition(TraversableLike.scala:314)
scala.collection.AbstractTraversable.partition(Traversable.scala:104)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16.applyOrElse(Optimizer.scala:716)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16.applyOrElse(Optimizer.scala:705)
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266)
org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256)
org.apache.spark.sql.catalyst.optimizer.PruneFilters.apply(Optimizer.scala:705)
org.apache.spark.sql.catalyst.optimizer.PruneFilters.apply(Optimizer.scala:704)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:85)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:82)
scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
scala.collection.immutable.List.foldLeft(List.scala:84)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:82)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:74)
scala.collection.immutable.List.foreach(List.scala:392)
org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:74)
org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:78) => holding Monitor(org.apache.spark.sql.execution.QueryExecution@1193326176})
org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:78)
org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:84) => holding Monitor(org.apache.spark.sql.execution.QueryExecution@1193326176})
org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:80)
org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:89) => holding Monitor(org.apache.spark.sql.execution.QueryExecution@1193326176})
org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:89)
org.apache.spark.sql.Dataset.withAction(Dataset.scala:2837)
org.apache.spark.sql.Dataset.collect(Dataset.scala:2387)
java scala apache-spark
2
need more details. it was very generic question. have you checked spark ui like stages etc...?
– Ram Ghadiyaram
Nov 20 '18 at 20:19
@RamGhadiyaram yeah spark ui shows that there are no "ACTIVE" jobs running. In other words, number of "COMPLETED" jobs it shows is 28 and it stays that way for the rest of the time. So I pause the execution of my test using IntelliJ to check what line of code its running or stuck at. Everytime I pause it, it shows to be executing some lines of code in scala.collection package. To be exact,sameElements
is the function that it gets paused at a lot..
– Karan Gupta
Nov 22 '18 at 0:55
add a comment |
I just upgraded spark 2.1.0 to spark 2.2.1. Has anyone seen extreme slow behavior on dataframe.filter(…).collect()
?.. specifically a collect
operation with filter
before. dataframe.collect
seems to run okay. However, dataframe.filter(…).collect()
takes forever. it contains only 2 records. and its on a unit test. When I go back to spark 2.1.0, its back to normal speed
I have looked at the thread dump and could not find an obvious cause. I have made an effort to make sure all the libraries I am using are also using Spark 2.2.1. Any suggestion would be greatly appreciated.
It seems to be stuck at this stacktrace
scala.collection.mutable.FlatHashTable$class.addEntry(FlatHashTable.scala:151)
scala.collection.mutable.HashSet.addEntry(HashSet.scala:40)
scala.collection.mutable.FlatHashTable$class.addElem(FlatHashTable.scala:142)
scala.collection.mutable.HashSet.addElem(HashSet.scala:40)
scala.collection.mutable.HashSet.$plus$eq(HashSet.scala:59)
scala.collection.mutable.HashSet.$plus$eq(HashSet.scala:40)
scala.collection.generic.Growable$$anonfun$$plus$plus$eq$1.apply(Growable.scala:59)
scala.collection.generic.Growable$$anonfun$$plus$plus$eq$1.apply(Growable.scala:59)
scala.collection.mutable.HashSet.foreach(HashSet.scala:78)
scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
scala.collection.mutable.AbstractSet.$plus$plus$eq(Set.scala:46)
scala.collection.mutable.HashSet.clone(HashSet.scala:83)
scala.collection.mutable.HashSet.clone(HashSet.scala:40)
org.apache.spark.sql.catalyst.expressions.ExpressionSet.$plus(ExpressionSet.scala:65)
org.apache.spark.sql.catalyst.expressions.ExpressionSet.$plus(ExpressionSet.scala:50)
scala.collection.SetLike$$anonfun$$plus$plus$1.apply(SetLike.scala:141)
scala.collection.SetLike$$anonfun$$plus$plus$1.apply(SetLike.scala:141)
scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
scala.collection.immutable.HashSet$HashSet1.foreach(HashSet.scala:316)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
scala.collection.AbstractTraversable.foldLeft(Traversable.scala:104)
scala.collection.TraversableOnce$class.$div$colon(TraversableOnce.scala:151)
scala.collection.AbstractTraversable.$div$colon(Traversable.scala:104)
scala.collection.SetLike$class.$plus$plus(SetLike.scala:141)
org.apache.spark.sql.catalyst.expressions.ExpressionSet.$plus$plus(ExpressionSet.scala:50)
org.apache.spark.sql.catalyst.plans.logical.UnaryNode$$anonfun$getAliasedConstraints$1.apply(LogicalPlan.scala:323)
org.apache.spark.sql.catalyst.plans.logical.UnaryNode$$anonfun$getAliasedConstraints$1.apply(LogicalPlan.scala:320)
scala.collection.immutable.List.foreach(List.scala:392)
org.apache.spark.sql.catalyst.plans.logical.UnaryNode.getAliasedConstraints(LogicalPlan.scala:320)
org.apache.spark.sql.catalyst.plans.logical.Project.validConstraints(basicLogicalOperators.scala:65)
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints$lzycompute(QueryPlan.scala:188) => holding Monitor(org.apache.spark.sql.catalyst.plans.logical.Aggregate@1129881457})
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints(QueryPlan.scala:188)
org.apache.spark.sql.catalyst.plans.logical.Aggregate.validConstraints(basicLogicalOperators.scala:555)
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints$lzycompute(QueryPlan.scala:188) => holding Monitor(org.apache.spark.sql.catalyst.plans.logical.Aggregate@1129881457})
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints(QueryPlan.scala:188)
org.apache.spark.sql.catalyst.plans.QueryPlan.getConstraints(QueryPlan.scala:196)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16$$anonfun$25.apply(Optimizer.scala:717)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16$$anonfun$25.apply(Optimizer.scala:716)
scala.collection.TraversableLike$$anonfun$partition$1.apply(TraversableLike.scala:314)
scala.collection.TraversableLike$$anonfun$partition$1.apply(TraversableLike.scala:314)
scala.collection.immutable.List.foreach(List.scala:392)
scala.collection.TraversableLike$class.partition(TraversableLike.scala:314)
scala.collection.AbstractTraversable.partition(Traversable.scala:104)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16.applyOrElse(Optimizer.scala:716)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16.applyOrElse(Optimizer.scala:705)
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266)
org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256)
org.apache.spark.sql.catalyst.optimizer.PruneFilters.apply(Optimizer.scala:705)
org.apache.spark.sql.catalyst.optimizer.PruneFilters.apply(Optimizer.scala:704)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:85)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:82)
scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
scala.collection.immutable.List.foldLeft(List.scala:84)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:82)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:74)
scala.collection.immutable.List.foreach(List.scala:392)
org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:74)
org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:78) => holding Monitor(org.apache.spark.sql.execution.QueryExecution@1193326176})
org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:78)
org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:84) => holding Monitor(org.apache.spark.sql.execution.QueryExecution@1193326176})
org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:80)
org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:89) => holding Monitor(org.apache.spark.sql.execution.QueryExecution@1193326176})
org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:89)
org.apache.spark.sql.Dataset.withAction(Dataset.scala:2837)
org.apache.spark.sql.Dataset.collect(Dataset.scala:2387)
java scala apache-spark
I just upgraded spark 2.1.0 to spark 2.2.1. Has anyone seen extreme slow behavior on dataframe.filter(…).collect()
?.. specifically a collect
operation with filter
before. dataframe.collect
seems to run okay. However, dataframe.filter(…).collect()
takes forever. it contains only 2 records. and its on a unit test. When I go back to spark 2.1.0, its back to normal speed
I have looked at the thread dump and could not find an obvious cause. I have made an effort to make sure all the libraries I am using are also using Spark 2.2.1. Any suggestion would be greatly appreciated.
It seems to be stuck at this stacktrace
scala.collection.mutable.FlatHashTable$class.addEntry(FlatHashTable.scala:151)
scala.collection.mutable.HashSet.addEntry(HashSet.scala:40)
scala.collection.mutable.FlatHashTable$class.addElem(FlatHashTable.scala:142)
scala.collection.mutable.HashSet.addElem(HashSet.scala:40)
scala.collection.mutable.HashSet.$plus$eq(HashSet.scala:59)
scala.collection.mutable.HashSet.$plus$eq(HashSet.scala:40)
scala.collection.generic.Growable$$anonfun$$plus$plus$eq$1.apply(Growable.scala:59)
scala.collection.generic.Growable$$anonfun$$plus$plus$eq$1.apply(Growable.scala:59)
scala.collection.mutable.HashSet.foreach(HashSet.scala:78)
scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
scala.collection.mutable.AbstractSet.$plus$plus$eq(Set.scala:46)
scala.collection.mutable.HashSet.clone(HashSet.scala:83)
scala.collection.mutable.HashSet.clone(HashSet.scala:40)
org.apache.spark.sql.catalyst.expressions.ExpressionSet.$plus(ExpressionSet.scala:65)
org.apache.spark.sql.catalyst.expressions.ExpressionSet.$plus(ExpressionSet.scala:50)
scala.collection.SetLike$$anonfun$$plus$plus$1.apply(SetLike.scala:141)
scala.collection.SetLike$$anonfun$$plus$plus$1.apply(SetLike.scala:141)
scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
scala.collection.immutable.HashSet$HashSet1.foreach(HashSet.scala:316)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.immutable.HashSet$HashTrieSet.foreach(HashSet.scala:972)
scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
scala.collection.AbstractTraversable.foldLeft(Traversable.scala:104)
scala.collection.TraversableOnce$class.$div$colon(TraversableOnce.scala:151)
scala.collection.AbstractTraversable.$div$colon(Traversable.scala:104)
scala.collection.SetLike$class.$plus$plus(SetLike.scala:141)
org.apache.spark.sql.catalyst.expressions.ExpressionSet.$plus$plus(ExpressionSet.scala:50)
org.apache.spark.sql.catalyst.plans.logical.UnaryNode$$anonfun$getAliasedConstraints$1.apply(LogicalPlan.scala:323)
org.apache.spark.sql.catalyst.plans.logical.UnaryNode$$anonfun$getAliasedConstraints$1.apply(LogicalPlan.scala:320)
scala.collection.immutable.List.foreach(List.scala:392)
org.apache.spark.sql.catalyst.plans.logical.UnaryNode.getAliasedConstraints(LogicalPlan.scala:320)
org.apache.spark.sql.catalyst.plans.logical.Project.validConstraints(basicLogicalOperators.scala:65)
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints$lzycompute(QueryPlan.scala:188) => holding Monitor(org.apache.spark.sql.catalyst.plans.logical.Aggregate@1129881457})
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints(QueryPlan.scala:188)
org.apache.spark.sql.catalyst.plans.logical.Aggregate.validConstraints(basicLogicalOperators.scala:555)
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints$lzycompute(QueryPlan.scala:188) => holding Monitor(org.apache.spark.sql.catalyst.plans.logical.Aggregate@1129881457})
org.apache.spark.sql.catalyst.plans.QueryPlan.constraints(QueryPlan.scala:188)
org.apache.spark.sql.catalyst.plans.QueryPlan.getConstraints(QueryPlan.scala:196)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16$$anonfun$25.apply(Optimizer.scala:717)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16$$anonfun$25.apply(Optimizer.scala:716)
scala.collection.TraversableLike$$anonfun$partition$1.apply(TraversableLike.scala:314)
scala.collection.TraversableLike$$anonfun$partition$1.apply(TraversableLike.scala:314)
scala.collection.immutable.List.foreach(List.scala:392)
scala.collection.TraversableLike$class.partition(TraversableLike.scala:314)
scala.collection.AbstractTraversable.partition(Traversable.scala:104)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16.applyOrElse(Optimizer.scala:716)
org.apache.spark.sql.catalyst.optimizer.PruneFilters$$anonfun$apply$16.applyOrElse(Optimizer.scala:705)
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266)
org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256)
org.apache.spark.sql.catalyst.optimizer.PruneFilters.apply(Optimizer.scala:705)
org.apache.spark.sql.catalyst.optimizer.PruneFilters.apply(Optimizer.scala:704)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:85)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:82)
scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
scala.collection.immutable.List.foldLeft(List.scala:84)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:82)
org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:74)
scala.collection.immutable.List.foreach(List.scala:392)
org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:74)
org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:78) => holding Monitor(org.apache.spark.sql.execution.QueryExecution@1193326176})
org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:78)
org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:84) => holding Monitor(org.apache.spark.sql.execution.QueryExecution@1193326176})
org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:80)
org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:89) => holding Monitor(org.apache.spark.sql.execution.QueryExecution@1193326176})
org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:89)
org.apache.spark.sql.Dataset.withAction(Dataset.scala:2837)
org.apache.spark.sql.Dataset.collect(Dataset.scala:2387)
java scala apache-spark
java scala apache-spark
edited Nov 22 '18 at 1:11
Karan Gupta
asked Nov 20 '18 at 20:03
Karan GuptaKaran Gupta
113
113
2
need more details. it was very generic question. have you checked spark ui like stages etc...?
– Ram Ghadiyaram
Nov 20 '18 at 20:19
@RamGhadiyaram yeah spark ui shows that there are no "ACTIVE" jobs running. In other words, number of "COMPLETED" jobs it shows is 28 and it stays that way for the rest of the time. So I pause the execution of my test using IntelliJ to check what line of code its running or stuck at. Everytime I pause it, it shows to be executing some lines of code in scala.collection package. To be exact,sameElements
is the function that it gets paused at a lot..
– Karan Gupta
Nov 22 '18 at 0:55
add a comment |
2
need more details. it was very generic question. have you checked spark ui like stages etc...?
– Ram Ghadiyaram
Nov 20 '18 at 20:19
@RamGhadiyaram yeah spark ui shows that there are no "ACTIVE" jobs running. In other words, number of "COMPLETED" jobs it shows is 28 and it stays that way for the rest of the time. So I pause the execution of my test using IntelliJ to check what line of code its running or stuck at. Everytime I pause it, it shows to be executing some lines of code in scala.collection package. To be exact,sameElements
is the function that it gets paused at a lot..
– Karan Gupta
Nov 22 '18 at 0:55
2
2
need more details. it was very generic question. have you checked spark ui like stages etc...?
– Ram Ghadiyaram
Nov 20 '18 at 20:19
need more details. it was very generic question. have you checked spark ui like stages etc...?
– Ram Ghadiyaram
Nov 20 '18 at 20:19
@RamGhadiyaram yeah spark ui shows that there are no "ACTIVE" jobs running. In other words, number of "COMPLETED" jobs it shows is 28 and it stays that way for the rest of the time. So I pause the execution of my test using IntelliJ to check what line of code its running or stuck at. Everytime I pause it, it shows to be executing some lines of code in scala.collection package. To be exact,
sameElements
is the function that it gets paused at a lot..– Karan Gupta
Nov 22 '18 at 0:55
@RamGhadiyaram yeah spark ui shows that there are no "ACTIVE" jobs running. In other words, number of "COMPLETED" jobs it shows is 28 and it stays that way for the rest of the time. So I pause the execution of my test using IntelliJ to check what line of code its running or stuck at. Everytime I pause it, it shows to be executing some lines of code in scala.collection package. To be exact,
sameElements
is the function that it gets paused at a lot..– Karan Gupta
Nov 22 '18 at 0:55
add a comment |
1 Answer
1
active
oldest
votes
Fixed it. So the problem was regarding this property spark.sql.constraintPropagation.enabled
. The default value is true
in Spark 2.2.1. The stacktrace indicates that its stuck in some query plan generation. I found my answer in this blog
Short answer: Set the said property to false. spark.conf.set(SQLConf.CONSTRAINT_PROPAGATION_ENABLED.key, false)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53400713%2fspark-dataframe-action-really-slow-when-upgraded-from-2-1-0-to-2-2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Fixed it. So the problem was regarding this property spark.sql.constraintPropagation.enabled
. The default value is true
in Spark 2.2.1. The stacktrace indicates that its stuck in some query plan generation. I found my answer in this blog
Short answer: Set the said property to false. spark.conf.set(SQLConf.CONSTRAINT_PROPAGATION_ENABLED.key, false)
add a comment |
Fixed it. So the problem was regarding this property spark.sql.constraintPropagation.enabled
. The default value is true
in Spark 2.2.1. The stacktrace indicates that its stuck in some query plan generation. I found my answer in this blog
Short answer: Set the said property to false. spark.conf.set(SQLConf.CONSTRAINT_PROPAGATION_ENABLED.key, false)
add a comment |
Fixed it. So the problem was regarding this property spark.sql.constraintPropagation.enabled
. The default value is true
in Spark 2.2.1. The stacktrace indicates that its stuck in some query plan generation. I found my answer in this blog
Short answer: Set the said property to false. spark.conf.set(SQLConf.CONSTRAINT_PROPAGATION_ENABLED.key, false)
Fixed it. So the problem was regarding this property spark.sql.constraintPropagation.enabled
. The default value is true
in Spark 2.2.1. The stacktrace indicates that its stuck in some query plan generation. I found my answer in this blog
Short answer: Set the said property to false. spark.conf.set(SQLConf.CONSTRAINT_PROPAGATION_ENABLED.key, false)
answered Nov 22 '18 at 21:39
Karan GuptaKaran Gupta
113
113
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53400713%2fspark-dataframe-action-really-slow-when-upgraded-from-2-1-0-to-2-2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
need more details. it was very generic question. have you checked spark ui like stages etc...?
– Ram Ghadiyaram
Nov 20 '18 at 20:19
@RamGhadiyaram yeah spark ui shows that there are no "ACTIVE" jobs running. In other words, number of "COMPLETED" jobs it shows is 28 and it stays that way for the rest of the time. So I pause the execution of my test using IntelliJ to check what line of code its running or stuck at. Everytime I pause it, it shows to be executing some lines of code in scala.collection package. To be exact,
sameElements
is the function that it gets paused at a lot..– Karan Gupta
Nov 22 '18 at 0:55