What are the units of probability density?












1














Units of probability density? If bound electron is thought of as a cloud of charge, and it's charge density is proportional to the probability density. Then coulombs /m3 proportional to?










share|cite|improve this question





























    1














    Units of probability density? If bound electron is thought of as a cloud of charge, and it's charge density is proportional to the probability density. Then coulombs /m3 proportional to?










    share|cite|improve this question



























      1












      1








      1


      1





      Units of probability density? If bound electron is thought of as a cloud of charge, and it's charge density is proportional to the probability density. Then coulombs /m3 proportional to?










      share|cite|improve this question















      Units of probability density? If bound electron is thought of as a cloud of charge, and it's charge density is proportional to the probability density. Then coulombs /m3 proportional to?







      quantum-mechanics wavefunction units probability dimensional-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 22 '18 at 5:53









      Qmechanic

      102k121831161




      102k121831161










      asked Nov 22 '18 at 3:35









      TontoTonto

      62




      62






















          2 Answers
          2






          active

          oldest

          votes


















          6














          The units of probability density in three-dimensional space are inverse volume, $[L]^{-3}$. This is because probability itself is a dimensionless number, such as 0.5 for a probability of 50%.



          A normalized wavefunction $Psi(vec{r},t)$ has dimensions $[L]^{-3/2}$ because the square of its complex magnitude, integrated over all space, must be 1. There is 100% probability that the electron is somewhere.



          The charge density at a point is the particle’s charge times the probability density at that point.



          When the wavefunction is for an electron, the charge density is $rho(vec{r},t)=-e|Psi(vec{r},t)|^2$, which could be expressed in units such as Coulombs per cubic meter ($text{C/m}^3$).






          share|cite|improve this answer































            1














            You can think about it by looking at what quantities you get from probability density. Namely, probability is dimensionless (it's just a number between 0 and 1), and given by the integral of probability density, so $P = int rho text{ d}V$.



            The volume element has dimensions $ [L]^3$, so the probability density must have dimensions $[L]^{-3}$.






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "151"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f442485%2fwhat-are-the-units-of-probability-density%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              6














              The units of probability density in three-dimensional space are inverse volume, $[L]^{-3}$. This is because probability itself is a dimensionless number, such as 0.5 for a probability of 50%.



              A normalized wavefunction $Psi(vec{r},t)$ has dimensions $[L]^{-3/2}$ because the square of its complex magnitude, integrated over all space, must be 1. There is 100% probability that the electron is somewhere.



              The charge density at a point is the particle’s charge times the probability density at that point.



              When the wavefunction is for an electron, the charge density is $rho(vec{r},t)=-e|Psi(vec{r},t)|^2$, which could be expressed in units such as Coulombs per cubic meter ($text{C/m}^3$).






              share|cite|improve this answer




























                6














                The units of probability density in three-dimensional space are inverse volume, $[L]^{-3}$. This is because probability itself is a dimensionless number, such as 0.5 for a probability of 50%.



                A normalized wavefunction $Psi(vec{r},t)$ has dimensions $[L]^{-3/2}$ because the square of its complex magnitude, integrated over all space, must be 1. There is 100% probability that the electron is somewhere.



                The charge density at a point is the particle’s charge times the probability density at that point.



                When the wavefunction is for an electron, the charge density is $rho(vec{r},t)=-e|Psi(vec{r},t)|^2$, which could be expressed in units such as Coulombs per cubic meter ($text{C/m}^3$).






                share|cite|improve this answer


























                  6












                  6








                  6






                  The units of probability density in three-dimensional space are inverse volume, $[L]^{-3}$. This is because probability itself is a dimensionless number, such as 0.5 for a probability of 50%.



                  A normalized wavefunction $Psi(vec{r},t)$ has dimensions $[L]^{-3/2}$ because the square of its complex magnitude, integrated over all space, must be 1. There is 100% probability that the electron is somewhere.



                  The charge density at a point is the particle’s charge times the probability density at that point.



                  When the wavefunction is for an electron, the charge density is $rho(vec{r},t)=-e|Psi(vec{r},t)|^2$, which could be expressed in units such as Coulombs per cubic meter ($text{C/m}^3$).






                  share|cite|improve this answer














                  The units of probability density in three-dimensional space are inverse volume, $[L]^{-3}$. This is because probability itself is a dimensionless number, such as 0.5 for a probability of 50%.



                  A normalized wavefunction $Psi(vec{r},t)$ has dimensions $[L]^{-3/2}$ because the square of its complex magnitude, integrated over all space, must be 1. There is 100% probability that the electron is somewhere.



                  The charge density at a point is the particle’s charge times the probability density at that point.



                  When the wavefunction is for an electron, the charge density is $rho(vec{r},t)=-e|Psi(vec{r},t)|^2$, which could be expressed in units such as Coulombs per cubic meter ($text{C/m}^3$).







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 22 '18 at 4:06

























                  answered Nov 22 '18 at 3:38









                  G. SmithG. Smith

                  4,9131021




                  4,9131021























                      1














                      You can think about it by looking at what quantities you get from probability density. Namely, probability is dimensionless (it's just a number between 0 and 1), and given by the integral of probability density, so $P = int rho text{ d}V$.



                      The volume element has dimensions $ [L]^3$, so the probability density must have dimensions $[L]^{-3}$.






                      share|cite|improve this answer


























                        1














                        You can think about it by looking at what quantities you get from probability density. Namely, probability is dimensionless (it's just a number between 0 and 1), and given by the integral of probability density, so $P = int rho text{ d}V$.



                        The volume element has dimensions $ [L]^3$, so the probability density must have dimensions $[L]^{-3}$.






                        share|cite|improve this answer
























                          1












                          1








                          1






                          You can think about it by looking at what quantities you get from probability density. Namely, probability is dimensionless (it's just a number between 0 and 1), and given by the integral of probability density, so $P = int rho text{ d}V$.



                          The volume element has dimensions $ [L]^3$, so the probability density must have dimensions $[L]^{-3}$.






                          share|cite|improve this answer












                          You can think about it by looking at what quantities you get from probability density. Namely, probability is dimensionless (it's just a number between 0 and 1), and given by the integral of probability density, so $P = int rho text{ d}V$.



                          The volume element has dimensions $ [L]^3$, so the probability density must have dimensions $[L]^{-3}$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Nov 22 '18 at 9:30









                          Thomas JonesThomas Jones

                          36618




                          36618






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Physics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f442485%2fwhat-are-the-units-of-probability-density%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              How to fix TextFormField cause rebuild widget in Flutter

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith