Compute $S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor$
$begingroup$
I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$
But I am not sure if this is correct. Perhaps someone could give an indication.
sequences-and-series number-theory
$endgroup$
add a comment |
$begingroup$
I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$
But I am not sure if this is correct. Perhaps someone could give an indication.
sequences-and-series number-theory
$endgroup$
1
$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
Jan 11 at 8:35
1
$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
Jan 11 at 8:38
$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
Jan 11 at 8:39
$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
Jan 11 at 14:42
add a comment |
$begingroup$
I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$
But I am not sure if this is correct. Perhaps someone could give an indication.
sequences-and-series number-theory
$endgroup$
I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$
But I am not sure if this is correct. Perhaps someone could give an indication.
sequences-and-series number-theory
sequences-and-series number-theory
edited Jan 11 at 15:27
Asaf Karagila♦
304k32430763
304k32430763
asked Jan 11 at 8:29
Hello_WorldHello_World
4,12621731
4,12621731
1
$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
Jan 11 at 8:35
1
$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
Jan 11 at 8:38
$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
Jan 11 at 8:39
$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
Jan 11 at 14:42
add a comment |
1
$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
Jan 11 at 8:35
1
$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
Jan 11 at 8:38
$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
Jan 11 at 8:39
$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
Jan 11 at 14:42
1
1
$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
Jan 11 at 8:35
$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
Jan 11 at 8:35
1
1
$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
Jan 11 at 8:38
$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
Jan 11 at 8:38
$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
Jan 11 at 8:39
$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
Jan 11 at 8:39
$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
Jan 11 at 14:42
$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
Jan 11 at 14:42
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes, you are correct. You may also write the result as a more compact formula:
$$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
begin{cases}
t^2&text {if $m=2t$}\
t(t+1)&text {if $m=2t+1$}\
end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$
Indeed, if $m=2t$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
and if $m=2t+1$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069610%2fcompute-s-sum-k-0m-left-lfloor-frack2-right-rfloor%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, you are correct. You may also write the result as a more compact formula:
$$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
begin{cases}
t^2&text {if $m=2t$}\
t(t+1)&text {if $m=2t+1$}\
end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$
Indeed, if $m=2t$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
and if $m=2t+1$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$
$endgroup$
add a comment |
$begingroup$
Yes, you are correct. You may also write the result as a more compact formula:
$$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
begin{cases}
t^2&text {if $m=2t$}\
t(t+1)&text {if $m=2t+1$}\
end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$
Indeed, if $m=2t$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
and if $m=2t+1$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$
$endgroup$
add a comment |
$begingroup$
Yes, you are correct. You may also write the result as a more compact formula:
$$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
begin{cases}
t^2&text {if $m=2t$}\
t(t+1)&text {if $m=2t+1$}\
end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$
Indeed, if $m=2t$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
and if $m=2t+1$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$
$endgroup$
Yes, you are correct. You may also write the result as a more compact formula:
$$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
begin{cases}
t^2&text {if $m=2t$}\
t(t+1)&text {if $m=2t+1$}\
end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$
Indeed, if $m=2t$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
and if $m=2t+1$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$
edited Jan 11 at 8:46
answered Jan 11 at 8:40


Robert ZRobert Z
96.5k1065136
96.5k1065136
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069610%2fcompute-s-sum-k-0m-left-lfloor-frack2-right-rfloor%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You can write $t$ in terms of $m$ in each case.
$endgroup$
– Hello_World
Jan 11 at 8:35
1
$begingroup$
@Hello_World Actuallly, you can.
$endgroup$
– 5xum
Jan 11 at 8:38
$begingroup$
Are you asking me to write them in terms of $m$? I can do that if it helps.
$endgroup$
– Hello_World
Jan 11 at 8:39
$begingroup$
@KemonoChen, please write that as an answer so that we can downvote it.
$endgroup$
– Carsten S
Jan 11 at 14:42