Distribution of $min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$
$begingroup$
Let $X_{i},(i=1,2,3,4,5,6)$ be i.i.d continuous random variables with distribution $F( cdot )$ and density $f( cdot )$. What will be the distribution of $min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$?
Here is my attempt-
Let $W=min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$. We need to find $P(Wleq w)$. Let $X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5$. Then, the problem reduces to
$P(X_1leq w-x_2-x_3,x_2+x_3+x_4leq w,x_3+x_4+x_5leq w,X_6leq w-x_4-x_5|X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5)$.
Since all $X_i$ are independent, then we can write the above expression as
$P(X_1leq w-x_2-x_3).P(X_6leq w-x_4-x_5)$ subject to the limits $x_2+x_3+x_4leq w,x_3+x_4+x_5leq w$.
Is my approach correct?
probability statistics probability-distributions self-learning
$endgroup$
add a comment |
$begingroup$
Let $X_{i},(i=1,2,3,4,5,6)$ be i.i.d continuous random variables with distribution $F( cdot )$ and density $f( cdot )$. What will be the distribution of $min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$?
Here is my attempt-
Let $W=min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$. We need to find $P(Wleq w)$. Let $X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5$. Then, the problem reduces to
$P(X_1leq w-x_2-x_3,x_2+x_3+x_4leq w,x_3+x_4+x_5leq w,X_6leq w-x_4-x_5|X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5)$.
Since all $X_i$ are independent, then we can write the above expression as
$P(X_1leq w-x_2-x_3).P(X_6leq w-x_4-x_5)$ subject to the limits $x_2+x_3+x_4leq w,x_3+x_4+x_5leq w$.
Is my approach correct?
probability statistics probability-distributions self-learning
$endgroup$
2
$begingroup$
You should go for finding $P(W>w)$ (not $P(Wleq w)$). Note that $P(min(X,Y)>w)=P(X>w,Y>w)$ which is better to handle than $P(Wleq w)=P(Xleq wtext{ or }Yleq w)$.
$endgroup$
– drhab
Jan 30 at 10:24
$begingroup$
@drhab I get your point. But I'm a little confused about the limits of the integrals. Can you please help me out with that?
$endgroup$
– superhulk
Jan 30 at 11:15
$begingroup$
Cross-post yet again: stats.stackexchange.com/questions/389864/….
$endgroup$
– StubbornAtom
Jan 30 at 15:55
add a comment |
$begingroup$
Let $X_{i},(i=1,2,3,4,5,6)$ be i.i.d continuous random variables with distribution $F( cdot )$ and density $f( cdot )$. What will be the distribution of $min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$?
Here is my attempt-
Let $W=min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$. We need to find $P(Wleq w)$. Let $X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5$. Then, the problem reduces to
$P(X_1leq w-x_2-x_3,x_2+x_3+x_4leq w,x_3+x_4+x_5leq w,X_6leq w-x_4-x_5|X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5)$.
Since all $X_i$ are independent, then we can write the above expression as
$P(X_1leq w-x_2-x_3).P(X_6leq w-x_4-x_5)$ subject to the limits $x_2+x_3+x_4leq w,x_3+x_4+x_5leq w$.
Is my approach correct?
probability statistics probability-distributions self-learning
$endgroup$
Let $X_{i},(i=1,2,3,4,5,6)$ be i.i.d continuous random variables with distribution $F( cdot )$ and density $f( cdot )$. What will be the distribution of $min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$?
Here is my attempt-
Let $W=min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$. We need to find $P(Wleq w)$. Let $X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5$. Then, the problem reduces to
$P(X_1leq w-x_2-x_3,x_2+x_3+x_4leq w,x_3+x_4+x_5leq w,X_6leq w-x_4-x_5|X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5)$.
Since all $X_i$ are independent, then we can write the above expression as
$P(X_1leq w-x_2-x_3).P(X_6leq w-x_4-x_5)$ subject to the limits $x_2+x_3+x_4leq w,x_3+x_4+x_5leq w$.
Is my approach correct?
probability statistics probability-distributions self-learning
probability statistics probability-distributions self-learning
asked Jan 30 at 9:55
superhulksuperhulk
1203
1203
2
$begingroup$
You should go for finding $P(W>w)$ (not $P(Wleq w)$). Note that $P(min(X,Y)>w)=P(X>w,Y>w)$ which is better to handle than $P(Wleq w)=P(Xleq wtext{ or }Yleq w)$.
$endgroup$
– drhab
Jan 30 at 10:24
$begingroup$
@drhab I get your point. But I'm a little confused about the limits of the integrals. Can you please help me out with that?
$endgroup$
– superhulk
Jan 30 at 11:15
$begingroup$
Cross-post yet again: stats.stackexchange.com/questions/389864/….
$endgroup$
– StubbornAtom
Jan 30 at 15:55
add a comment |
2
$begingroup$
You should go for finding $P(W>w)$ (not $P(Wleq w)$). Note that $P(min(X,Y)>w)=P(X>w,Y>w)$ which is better to handle than $P(Wleq w)=P(Xleq wtext{ or }Yleq w)$.
$endgroup$
– drhab
Jan 30 at 10:24
$begingroup$
@drhab I get your point. But I'm a little confused about the limits of the integrals. Can you please help me out with that?
$endgroup$
– superhulk
Jan 30 at 11:15
$begingroup$
Cross-post yet again: stats.stackexchange.com/questions/389864/….
$endgroup$
– StubbornAtom
Jan 30 at 15:55
2
2
$begingroup$
You should go for finding $P(W>w)$ (not $P(Wleq w)$). Note that $P(min(X,Y)>w)=P(X>w,Y>w)$ which is better to handle than $P(Wleq w)=P(Xleq wtext{ or }Yleq w)$.
$endgroup$
– drhab
Jan 30 at 10:24
$begingroup$
You should go for finding $P(W>w)$ (not $P(Wleq w)$). Note that $P(min(X,Y)>w)=P(X>w,Y>w)$ which is better to handle than $P(Wleq w)=P(Xleq wtext{ or }Yleq w)$.
$endgroup$
– drhab
Jan 30 at 10:24
$begingroup$
@drhab I get your point. But I'm a little confused about the limits of the integrals. Can you please help me out with that?
$endgroup$
– superhulk
Jan 30 at 11:15
$begingroup$
@drhab I get your point. But I'm a little confused about the limits of the integrals. Can you please help me out with that?
$endgroup$
– superhulk
Jan 30 at 11:15
$begingroup$
Cross-post yet again: stats.stackexchange.com/questions/389864/….
$endgroup$
– StubbornAtom
Jan 30 at 15:55
$begingroup$
Cross-post yet again: stats.stackexchange.com/questions/389864/….
$endgroup$
– StubbornAtom
Jan 30 at 15:55
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093317%2fdistribution-of-minx-1x-2x-3-x-2x-3x-4-x-3x-4x-5-x-4x-5x-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093317%2fdistribution-of-minx-1x-2x-3-x-2x-3x-4-x-3x-4x-5-x-4x-5x-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
You should go for finding $P(W>w)$ (not $P(Wleq w)$). Note that $P(min(X,Y)>w)=P(X>w,Y>w)$ which is better to handle than $P(Wleq w)=P(Xleq wtext{ or }Yleq w)$.
$endgroup$
– drhab
Jan 30 at 10:24
$begingroup$
@drhab I get your point. But I'm a little confused about the limits of the integrals. Can you please help me out with that?
$endgroup$
– superhulk
Jan 30 at 11:15
$begingroup$
Cross-post yet again: stats.stackexchange.com/questions/389864/….
$endgroup$
– StubbornAtom
Jan 30 at 15:55