Distribution of $min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$












1












$begingroup$


Let $X_{i},(i=1,2,3,4,5,6)$ be i.i.d continuous random variables with distribution $F( cdot )$ and density $f( cdot )$. What will be the distribution of $min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$?



Here is my attempt-



Let $W=min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$. We need to find $P(Wleq w)$. Let $X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5$. Then, the problem reduces to



$P(X_1leq w-x_2-x_3,x_2+x_3+x_4leq w,x_3+x_4+x_5leq w,X_6leq w-x_4-x_5|X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5)$.



Since all $X_i$ are independent, then we can write the above expression as



$P(X_1leq w-x_2-x_3).P(X_6leq w-x_4-x_5)$ subject to the limits $x_2+x_3+x_4leq w,x_3+x_4+x_5leq w$.



Is my approach correct?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    You should go for finding $P(W>w)$ (not $P(Wleq w)$). Note that $P(min(X,Y)>w)=P(X>w,Y>w)$ which is better to handle than $P(Wleq w)=P(Xleq wtext{ or }Yleq w)$.
    $endgroup$
    – drhab
    Jan 30 at 10:24












  • $begingroup$
    @drhab I get your point. But I'm a little confused about the limits of the integrals. Can you please help me out with that?
    $endgroup$
    – superhulk
    Jan 30 at 11:15










  • $begingroup$
    Cross-post yet again: stats.stackexchange.com/questions/389864/….
    $endgroup$
    – StubbornAtom
    Jan 30 at 15:55
















1












$begingroup$


Let $X_{i},(i=1,2,3,4,5,6)$ be i.i.d continuous random variables with distribution $F( cdot )$ and density $f( cdot )$. What will be the distribution of $min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$?



Here is my attempt-



Let $W=min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$. We need to find $P(Wleq w)$. Let $X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5$. Then, the problem reduces to



$P(X_1leq w-x_2-x_3,x_2+x_3+x_4leq w,x_3+x_4+x_5leq w,X_6leq w-x_4-x_5|X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5)$.



Since all $X_i$ are independent, then we can write the above expression as



$P(X_1leq w-x_2-x_3).P(X_6leq w-x_4-x_5)$ subject to the limits $x_2+x_3+x_4leq w,x_3+x_4+x_5leq w$.



Is my approach correct?










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    You should go for finding $P(W>w)$ (not $P(Wleq w)$). Note that $P(min(X,Y)>w)=P(X>w,Y>w)$ which is better to handle than $P(Wleq w)=P(Xleq wtext{ or }Yleq w)$.
    $endgroup$
    – drhab
    Jan 30 at 10:24












  • $begingroup$
    @drhab I get your point. But I'm a little confused about the limits of the integrals. Can you please help me out with that?
    $endgroup$
    – superhulk
    Jan 30 at 11:15










  • $begingroup$
    Cross-post yet again: stats.stackexchange.com/questions/389864/….
    $endgroup$
    – StubbornAtom
    Jan 30 at 15:55














1












1








1





$begingroup$


Let $X_{i},(i=1,2,3,4,5,6)$ be i.i.d continuous random variables with distribution $F( cdot )$ and density $f( cdot )$. What will be the distribution of $min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$?



Here is my attempt-



Let $W=min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$. We need to find $P(Wleq w)$. Let $X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5$. Then, the problem reduces to



$P(X_1leq w-x_2-x_3,x_2+x_3+x_4leq w,x_3+x_4+x_5leq w,X_6leq w-x_4-x_5|X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5)$.



Since all $X_i$ are independent, then we can write the above expression as



$P(X_1leq w-x_2-x_3).P(X_6leq w-x_4-x_5)$ subject to the limits $x_2+x_3+x_4leq w,x_3+x_4+x_5leq w$.



Is my approach correct?










share|cite|improve this question









$endgroup$




Let $X_{i},(i=1,2,3,4,5,6)$ be i.i.d continuous random variables with distribution $F( cdot )$ and density $f( cdot )$. What will be the distribution of $min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$?



Here is my attempt-



Let $W=min(X_1+X_2+X_3,X_2+X_3+X_4,X_3+X_4+X_5,X_4+X_5+X_6)$. We need to find $P(Wleq w)$. Let $X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5$. Then, the problem reduces to



$P(X_1leq w-x_2-x_3,x_2+x_3+x_4leq w,x_3+x_4+x_5leq w,X_6leq w-x_4-x_5|X_2 = x_2,X_3=x_3,X_4=x_4,X_5=x_5)$.



Since all $X_i$ are independent, then we can write the above expression as



$P(X_1leq w-x_2-x_3).P(X_6leq w-x_4-x_5)$ subject to the limits $x_2+x_3+x_4leq w,x_3+x_4+x_5leq w$.



Is my approach correct?







probability statistics probability-distributions self-learning






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 30 at 9:55









superhulksuperhulk

1203




1203








  • 2




    $begingroup$
    You should go for finding $P(W>w)$ (not $P(Wleq w)$). Note that $P(min(X,Y)>w)=P(X>w,Y>w)$ which is better to handle than $P(Wleq w)=P(Xleq wtext{ or }Yleq w)$.
    $endgroup$
    – drhab
    Jan 30 at 10:24












  • $begingroup$
    @drhab I get your point. But I'm a little confused about the limits of the integrals. Can you please help me out with that?
    $endgroup$
    – superhulk
    Jan 30 at 11:15










  • $begingroup$
    Cross-post yet again: stats.stackexchange.com/questions/389864/….
    $endgroup$
    – StubbornAtom
    Jan 30 at 15:55














  • 2




    $begingroup$
    You should go for finding $P(W>w)$ (not $P(Wleq w)$). Note that $P(min(X,Y)>w)=P(X>w,Y>w)$ which is better to handle than $P(Wleq w)=P(Xleq wtext{ or }Yleq w)$.
    $endgroup$
    – drhab
    Jan 30 at 10:24












  • $begingroup$
    @drhab I get your point. But I'm a little confused about the limits of the integrals. Can you please help me out with that?
    $endgroup$
    – superhulk
    Jan 30 at 11:15










  • $begingroup$
    Cross-post yet again: stats.stackexchange.com/questions/389864/….
    $endgroup$
    – StubbornAtom
    Jan 30 at 15:55








2




2




$begingroup$
You should go for finding $P(W>w)$ (not $P(Wleq w)$). Note that $P(min(X,Y)>w)=P(X>w,Y>w)$ which is better to handle than $P(Wleq w)=P(Xleq wtext{ or }Yleq w)$.
$endgroup$
– drhab
Jan 30 at 10:24






$begingroup$
You should go for finding $P(W>w)$ (not $P(Wleq w)$). Note that $P(min(X,Y)>w)=P(X>w,Y>w)$ which is better to handle than $P(Wleq w)=P(Xleq wtext{ or }Yleq w)$.
$endgroup$
– drhab
Jan 30 at 10:24














$begingroup$
@drhab I get your point. But I'm a little confused about the limits of the integrals. Can you please help me out with that?
$endgroup$
– superhulk
Jan 30 at 11:15




$begingroup$
@drhab I get your point. But I'm a little confused about the limits of the integrals. Can you please help me out with that?
$endgroup$
– superhulk
Jan 30 at 11:15












$begingroup$
Cross-post yet again: stats.stackexchange.com/questions/389864/….
$endgroup$
– StubbornAtom
Jan 30 at 15:55




$begingroup$
Cross-post yet again: stats.stackexchange.com/questions/389864/….
$endgroup$
– StubbornAtom
Jan 30 at 15:55










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093317%2fdistribution-of-minx-1x-2x-3-x-2x-3x-4-x-3x-4x-5-x-4x-5x-6%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093317%2fdistribution-of-minx-1x-2x-3-x-2x-3x-4-x-3x-4x-5-x-4x-5x-6%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]