Simple way to compute $lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x}$ without de L'Hopital and Taylor












1












$begingroup$


What is the simplest way you can think of to compute the following limit?




$$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x}$$




Clearly, I can do it by using de L'Hopital or Taylor's theorems (and the properties of $exp$ and $log$), which give $$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x} = 1/e.$$



But I'm looking for a simpler way to do it by exploiting the fact that
$$lim_{x to 0} (1+x)^{1/x} = e.$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Also: $frac{1 + x}{1 + 2x} = 1 + frac{1}{frac{1 + 2x}{-x}}$
    $endgroup$
    – user626177
    Jan 16 at 1:59


















1












$begingroup$


What is the simplest way you can think of to compute the following limit?




$$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x}$$




Clearly, I can do it by using de L'Hopital or Taylor's theorems (and the properties of $exp$ and $log$), which give $$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x} = 1/e.$$



But I'm looking for a simpler way to do it by exploiting the fact that
$$lim_{x to 0} (1+x)^{1/x} = e.$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Also: $frac{1 + x}{1 + 2x} = 1 + frac{1}{frac{1 + 2x}{-x}}$
    $endgroup$
    – user626177
    Jan 16 at 1:59
















1












1








1


2



$begingroup$


What is the simplest way you can think of to compute the following limit?




$$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x}$$




Clearly, I can do it by using de L'Hopital or Taylor's theorems (and the properties of $exp$ and $log$), which give $$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x} = 1/e.$$



But I'm looking for a simpler way to do it by exploiting the fact that
$$lim_{x to 0} (1+x)^{1/x} = e.$$










share|cite|improve this question











$endgroup$




What is the simplest way you can think of to compute the following limit?




$$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x}$$




Clearly, I can do it by using de L'Hopital or Taylor's theorems (and the properties of $exp$ and $log$), which give $$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x} = 1/e.$$



But I'm looking for a simpler way to do it by exploiting the fact that
$$lim_{x to 0} (1+x)^{1/x} = e.$$







calculus limits limits-without-lhopital






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 12 at 18:53









Cameron Williams

22.4k43680




22.4k43680










asked Jan 12 at 18:29









DalDal

1,50322470




1,50322470












  • $begingroup$
    Also: $frac{1 + x}{1 + 2x} = 1 + frac{1}{frac{1 + 2x}{-x}}$
    $endgroup$
    – user626177
    Jan 16 at 1:59




















  • $begingroup$
    Also: $frac{1 + x}{1 + 2x} = 1 + frac{1}{frac{1 + 2x}{-x}}$
    $endgroup$
    – user626177
    Jan 16 at 1:59


















$begingroup$
Also: $frac{1 + x}{1 + 2x} = 1 + frac{1}{frac{1 + 2x}{-x}}$
$endgroup$
– user626177
Jan 16 at 1:59






$begingroup$
Also: $frac{1 + x}{1 + 2x} = 1 + frac{1}{frac{1 + 2x}{-x}}$
$endgroup$
– user626177
Jan 16 at 1:59












2 Answers
2






active

oldest

votes


















6












$begingroup$

$$left(dfrac{1+x}{1+2x}right)^{1/x}=dfrac{(1+x)^{1/x}}{left((1+2x)^{1/2x}right)^2}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Perfect. Thank you. There is just a small typo in the first line.
    $endgroup$
    – Dal
    Jan 12 at 18:37












  • $begingroup$
    It is very nice +1
    $endgroup$
    – Jimmy Sabater
    Jan 12 at 18:37



















3












$begingroup$

Define $y:=1/x$



Then



$$lim_{y rightarrow infty} dfrac{(1+1/y)^y}{(1+2/y)^y}=dfrac{lim_{y rightarrow infty}(1+1/y)^y}{lim_{y rightarrow infty}(1+2/y)^y}=e/e^2=e^{-1}$$



Where we used: $lim_{y rightarrow infty}(1+a/y)^y =e^a$, for $ainBbb R$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Joe Doe.Thanks:)
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:00











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071229%2fsimple-way-to-compute-lim-x-to-0-left-frac1x12x-right1-x-witho%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

$$left(dfrac{1+x}{1+2x}right)^{1/x}=dfrac{(1+x)^{1/x}}{left((1+2x)^{1/2x}right)^2}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Perfect. Thank you. There is just a small typo in the first line.
    $endgroup$
    – Dal
    Jan 12 at 18:37












  • $begingroup$
    It is very nice +1
    $endgroup$
    – Jimmy Sabater
    Jan 12 at 18:37
















6












$begingroup$

$$left(dfrac{1+x}{1+2x}right)^{1/x}=dfrac{(1+x)^{1/x}}{left((1+2x)^{1/2x}right)^2}.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Perfect. Thank you. There is just a small typo in the first line.
    $endgroup$
    – Dal
    Jan 12 at 18:37












  • $begingroup$
    It is very nice +1
    $endgroup$
    – Jimmy Sabater
    Jan 12 at 18:37














6












6








6





$begingroup$

$$left(dfrac{1+x}{1+2x}right)^{1/x}=dfrac{(1+x)^{1/x}}{left((1+2x)^{1/2x}right)^2}.$$






share|cite|improve this answer











$endgroup$



$$left(dfrac{1+x}{1+2x}right)^{1/x}=dfrac{(1+x)^{1/x}}{left((1+2x)^{1/2x}right)^2}.$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 12 at 18:51









amWhy

1




1










answered Jan 12 at 18:32









lab bhattacharjeelab bhattacharjee

225k15157275




225k15157275












  • $begingroup$
    Perfect. Thank you. There is just a small typo in the first line.
    $endgroup$
    – Dal
    Jan 12 at 18:37












  • $begingroup$
    It is very nice +1
    $endgroup$
    – Jimmy Sabater
    Jan 12 at 18:37


















  • $begingroup$
    Perfect. Thank you. There is just a small typo in the first line.
    $endgroup$
    – Dal
    Jan 12 at 18:37












  • $begingroup$
    It is very nice +1
    $endgroup$
    – Jimmy Sabater
    Jan 12 at 18:37
















$begingroup$
Perfect. Thank you. There is just a small typo in the first line.
$endgroup$
– Dal
Jan 12 at 18:37






$begingroup$
Perfect. Thank you. There is just a small typo in the first line.
$endgroup$
– Dal
Jan 12 at 18:37














$begingroup$
It is very nice +1
$endgroup$
– Jimmy Sabater
Jan 12 at 18:37




$begingroup$
It is very nice +1
$endgroup$
– Jimmy Sabater
Jan 12 at 18:37











3












$begingroup$

Define $y:=1/x$



Then



$$lim_{y rightarrow infty} dfrac{(1+1/y)^y}{(1+2/y)^y}=dfrac{lim_{y rightarrow infty}(1+1/y)^y}{lim_{y rightarrow infty}(1+2/y)^y}=e/e^2=e^{-1}$$



Where we used: $lim_{y rightarrow infty}(1+a/y)^y =e^a$, for $ainBbb R$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Joe Doe.Thanks:)
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:00
















3












$begingroup$

Define $y:=1/x$



Then



$$lim_{y rightarrow infty} dfrac{(1+1/y)^y}{(1+2/y)^y}=dfrac{lim_{y rightarrow infty}(1+1/y)^y}{lim_{y rightarrow infty}(1+2/y)^y}=e/e^2=e^{-1}$$



Where we used: $lim_{y rightarrow infty}(1+a/y)^y =e^a$, for $ainBbb R$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Joe Doe.Thanks:)
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:00














3












3








3





$begingroup$

Define $y:=1/x$



Then



$$lim_{y rightarrow infty} dfrac{(1+1/y)^y}{(1+2/y)^y}=dfrac{lim_{y rightarrow infty}(1+1/y)^y}{lim_{y rightarrow infty}(1+2/y)^y}=e/e^2=e^{-1}$$



Where we used: $lim_{y rightarrow infty}(1+a/y)^y =e^a$, for $ainBbb R$.






share|cite|improve this answer











$endgroup$



Define $y:=1/x$



Then



$$lim_{y rightarrow infty} dfrac{(1+1/y)^y}{(1+2/y)^y}=dfrac{lim_{y rightarrow infty}(1+1/y)^y}{lim_{y rightarrow infty}(1+2/y)^y}=e/e^2=e^{-1}$$



Where we used: $lim_{y rightarrow infty}(1+a/y)^y =e^a$, for $ainBbb R$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 12 at 21:38









John Doe

11.1k11238




11.1k11238










answered Jan 12 at 19:27









Peter SzilasPeter Szilas

11.2k2822




11.2k2822












  • $begingroup$
    Joe Doe.Thanks:)
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:00


















  • $begingroup$
    Joe Doe.Thanks:)
    $endgroup$
    – Peter Szilas
    Jan 12 at 22:00
















$begingroup$
Joe Doe.Thanks:)
$endgroup$
– Peter Szilas
Jan 12 at 22:00




$begingroup$
Joe Doe.Thanks:)
$endgroup$
– Peter Szilas
Jan 12 at 22:00


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071229%2fsimple-way-to-compute-lim-x-to-0-left-frac1x12x-right1-x-witho%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith