Simple way to compute $lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x}$ without de L'Hopital and Taylor
$begingroup$
What is the simplest way you can think of to compute the following limit?
$$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x}$$
Clearly, I can do it by using de L'Hopital or Taylor's theorems (and the properties of $exp$ and $log$), which give $$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x} = 1/e.$$
But I'm looking for a simpler way to do it by exploiting the fact that
$$lim_{x to 0} (1+x)^{1/x} = e.$$
calculus limits limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
What is the simplest way you can think of to compute the following limit?
$$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x}$$
Clearly, I can do it by using de L'Hopital or Taylor's theorems (and the properties of $exp$ and $log$), which give $$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x} = 1/e.$$
But I'm looking for a simpler way to do it by exploiting the fact that
$$lim_{x to 0} (1+x)^{1/x} = e.$$
calculus limits limits-without-lhopital
$endgroup$
$begingroup$
Also: $frac{1 + x}{1 + 2x} = 1 + frac{1}{frac{1 + 2x}{-x}}$
$endgroup$
– user626177
Jan 16 at 1:59
add a comment |
$begingroup$
What is the simplest way you can think of to compute the following limit?
$$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x}$$
Clearly, I can do it by using de L'Hopital or Taylor's theorems (and the properties of $exp$ and $log$), which give $$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x} = 1/e.$$
But I'm looking for a simpler way to do it by exploiting the fact that
$$lim_{x to 0} (1+x)^{1/x} = e.$$
calculus limits limits-without-lhopital
$endgroup$
What is the simplest way you can think of to compute the following limit?
$$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x}$$
Clearly, I can do it by using de L'Hopital or Taylor's theorems (and the properties of $exp$ and $log$), which give $$lim_{x to 0}left(frac{1+x}{1+2x} right)^{1/x} = 1/e.$$
But I'm looking for a simpler way to do it by exploiting the fact that
$$lim_{x to 0} (1+x)^{1/x} = e.$$
calculus limits limits-without-lhopital
calculus limits limits-without-lhopital
edited Jan 12 at 18:53


Cameron Williams
22.4k43680
22.4k43680
asked Jan 12 at 18:29
DalDal
1,50322470
1,50322470
$begingroup$
Also: $frac{1 + x}{1 + 2x} = 1 + frac{1}{frac{1 + 2x}{-x}}$
$endgroup$
– user626177
Jan 16 at 1:59
add a comment |
$begingroup$
Also: $frac{1 + x}{1 + 2x} = 1 + frac{1}{frac{1 + 2x}{-x}}$
$endgroup$
– user626177
Jan 16 at 1:59
$begingroup$
Also: $frac{1 + x}{1 + 2x} = 1 + frac{1}{frac{1 + 2x}{-x}}$
$endgroup$
– user626177
Jan 16 at 1:59
$begingroup$
Also: $frac{1 + x}{1 + 2x} = 1 + frac{1}{frac{1 + 2x}{-x}}$
$endgroup$
– user626177
Jan 16 at 1:59
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$left(dfrac{1+x}{1+2x}right)^{1/x}=dfrac{(1+x)^{1/x}}{left((1+2x)^{1/2x}right)^2}.$$
$endgroup$
$begingroup$
Perfect. Thank you. There is just a small typo in the first line.
$endgroup$
– Dal
Jan 12 at 18:37
$begingroup$
It is very nice +1
$endgroup$
– Jimmy Sabater
Jan 12 at 18:37
add a comment |
$begingroup$
Define $y:=1/x$
Then
$$lim_{y rightarrow infty} dfrac{(1+1/y)^y}{(1+2/y)^y}=dfrac{lim_{y rightarrow infty}(1+1/y)^y}{lim_{y rightarrow infty}(1+2/y)^y}=e/e^2=e^{-1}$$
Where we used: $lim_{y rightarrow infty}(1+a/y)^y =e^a$, for $ainBbb R$.
$endgroup$
$begingroup$
Joe Doe.Thanks:)
$endgroup$
– Peter Szilas
Jan 12 at 22:00
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071229%2fsimple-way-to-compute-lim-x-to-0-left-frac1x12x-right1-x-witho%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$left(dfrac{1+x}{1+2x}right)^{1/x}=dfrac{(1+x)^{1/x}}{left((1+2x)^{1/2x}right)^2}.$$
$endgroup$
$begingroup$
Perfect. Thank you. There is just a small typo in the first line.
$endgroup$
– Dal
Jan 12 at 18:37
$begingroup$
It is very nice +1
$endgroup$
– Jimmy Sabater
Jan 12 at 18:37
add a comment |
$begingroup$
$$left(dfrac{1+x}{1+2x}right)^{1/x}=dfrac{(1+x)^{1/x}}{left((1+2x)^{1/2x}right)^2}.$$
$endgroup$
$begingroup$
Perfect. Thank you. There is just a small typo in the first line.
$endgroup$
– Dal
Jan 12 at 18:37
$begingroup$
It is very nice +1
$endgroup$
– Jimmy Sabater
Jan 12 at 18:37
add a comment |
$begingroup$
$$left(dfrac{1+x}{1+2x}right)^{1/x}=dfrac{(1+x)^{1/x}}{left((1+2x)^{1/2x}right)^2}.$$
$endgroup$
$$left(dfrac{1+x}{1+2x}right)^{1/x}=dfrac{(1+x)^{1/x}}{left((1+2x)^{1/2x}right)^2}.$$
edited Jan 12 at 18:51


amWhy
1
1
answered Jan 12 at 18:32
lab bhattacharjeelab bhattacharjee
225k15157275
225k15157275
$begingroup$
Perfect. Thank you. There is just a small typo in the first line.
$endgroup$
– Dal
Jan 12 at 18:37
$begingroup$
It is very nice +1
$endgroup$
– Jimmy Sabater
Jan 12 at 18:37
add a comment |
$begingroup$
Perfect. Thank you. There is just a small typo in the first line.
$endgroup$
– Dal
Jan 12 at 18:37
$begingroup$
It is very nice +1
$endgroup$
– Jimmy Sabater
Jan 12 at 18:37
$begingroup$
Perfect. Thank you. There is just a small typo in the first line.
$endgroup$
– Dal
Jan 12 at 18:37
$begingroup$
Perfect. Thank you. There is just a small typo in the first line.
$endgroup$
– Dal
Jan 12 at 18:37
$begingroup$
It is very nice +1
$endgroup$
– Jimmy Sabater
Jan 12 at 18:37
$begingroup$
It is very nice +1
$endgroup$
– Jimmy Sabater
Jan 12 at 18:37
add a comment |
$begingroup$
Define $y:=1/x$
Then
$$lim_{y rightarrow infty} dfrac{(1+1/y)^y}{(1+2/y)^y}=dfrac{lim_{y rightarrow infty}(1+1/y)^y}{lim_{y rightarrow infty}(1+2/y)^y}=e/e^2=e^{-1}$$
Where we used: $lim_{y rightarrow infty}(1+a/y)^y =e^a$, for $ainBbb R$.
$endgroup$
$begingroup$
Joe Doe.Thanks:)
$endgroup$
– Peter Szilas
Jan 12 at 22:00
add a comment |
$begingroup$
Define $y:=1/x$
Then
$$lim_{y rightarrow infty} dfrac{(1+1/y)^y}{(1+2/y)^y}=dfrac{lim_{y rightarrow infty}(1+1/y)^y}{lim_{y rightarrow infty}(1+2/y)^y}=e/e^2=e^{-1}$$
Where we used: $lim_{y rightarrow infty}(1+a/y)^y =e^a$, for $ainBbb R$.
$endgroup$
$begingroup$
Joe Doe.Thanks:)
$endgroup$
– Peter Szilas
Jan 12 at 22:00
add a comment |
$begingroup$
Define $y:=1/x$
Then
$$lim_{y rightarrow infty} dfrac{(1+1/y)^y}{(1+2/y)^y}=dfrac{lim_{y rightarrow infty}(1+1/y)^y}{lim_{y rightarrow infty}(1+2/y)^y}=e/e^2=e^{-1}$$
Where we used: $lim_{y rightarrow infty}(1+a/y)^y =e^a$, for $ainBbb R$.
$endgroup$
Define $y:=1/x$
Then
$$lim_{y rightarrow infty} dfrac{(1+1/y)^y}{(1+2/y)^y}=dfrac{lim_{y rightarrow infty}(1+1/y)^y}{lim_{y rightarrow infty}(1+2/y)^y}=e/e^2=e^{-1}$$
Where we used: $lim_{y rightarrow infty}(1+a/y)^y =e^a$, for $ainBbb R$.
edited Jan 12 at 21:38
John Doe
11.1k11238
11.1k11238
answered Jan 12 at 19:27
Peter SzilasPeter Szilas
11.2k2822
11.2k2822
$begingroup$
Joe Doe.Thanks:)
$endgroup$
– Peter Szilas
Jan 12 at 22:00
add a comment |
$begingroup$
Joe Doe.Thanks:)
$endgroup$
– Peter Szilas
Jan 12 at 22:00
$begingroup$
Joe Doe.Thanks:)
$endgroup$
– Peter Szilas
Jan 12 at 22:00
$begingroup$
Joe Doe.Thanks:)
$endgroup$
– Peter Szilas
Jan 12 at 22:00
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071229%2fsimple-way-to-compute-lim-x-to-0-left-frac1x12x-right1-x-witho%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Also: $frac{1 + x}{1 + 2x} = 1 + frac{1}{frac{1 + 2x}{-x}}$
$endgroup$
– user626177
Jan 16 at 1:59