Why $|sqrt{a}-i|=sqrt{a+1}$ for every nonnegative real number $a$?












0












$begingroup$



Why $|sqrt{a}-i|=sqrt{a+1}$ for every nonnegative real number $a$?




I know that $i=sqrt{-1}$, and in my textbook I get $$|sqrt{x^2+(y-1)^2}-i|=sqrt{(x^2+(y-1)^2)^2+(-1)^2}=sqrt{x^2+(y-1)^2+1}$$



I can't find how the first two passages are connected.



Edit: corrected equation.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I don't get it. Let $x=2$ and $y=1$ to see that this is false.
    $endgroup$
    – Randall
    Jan 10 at 16:47






  • 1




    $begingroup$
    They are not... Take $a=1$. I highly doubt $1-i=sqrt 2$...
    $endgroup$
    – Martigan
    Jan 10 at 16:48






  • 1




    $begingroup$
    For every nonnegative real number $a$, $$|sqrt a-i|^2=(sqrt a-i)overline{(sqrt a+i)}=(sqrt a-i)(sqrt a+i)$$ hence $$|sqrt a-i|^2=a-i^2=a+1$$ which is equivalent to the desired identity $$|sqrt a-i|=sqrt{a+1}$$
    $endgroup$
    – Did
    Jan 10 at 16:50












  • $begingroup$
    I'm sorry, I corrected the equation.
    $endgroup$
    – Kevin
    Jan 10 at 16:52










  • $begingroup$
    Thank you @Did!
    $endgroup$
    – Kevin
    Jan 10 at 17:01
















0












$begingroup$



Why $|sqrt{a}-i|=sqrt{a+1}$ for every nonnegative real number $a$?




I know that $i=sqrt{-1}$, and in my textbook I get $$|sqrt{x^2+(y-1)^2}-i|=sqrt{(x^2+(y-1)^2)^2+(-1)^2}=sqrt{x^2+(y-1)^2+1}$$



I can't find how the first two passages are connected.



Edit: corrected equation.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I don't get it. Let $x=2$ and $y=1$ to see that this is false.
    $endgroup$
    – Randall
    Jan 10 at 16:47






  • 1




    $begingroup$
    They are not... Take $a=1$. I highly doubt $1-i=sqrt 2$...
    $endgroup$
    – Martigan
    Jan 10 at 16:48






  • 1




    $begingroup$
    For every nonnegative real number $a$, $$|sqrt a-i|^2=(sqrt a-i)overline{(sqrt a+i)}=(sqrt a-i)(sqrt a+i)$$ hence $$|sqrt a-i|^2=a-i^2=a+1$$ which is equivalent to the desired identity $$|sqrt a-i|=sqrt{a+1}$$
    $endgroup$
    – Did
    Jan 10 at 16:50












  • $begingroup$
    I'm sorry, I corrected the equation.
    $endgroup$
    – Kevin
    Jan 10 at 16:52










  • $begingroup$
    Thank you @Did!
    $endgroup$
    – Kevin
    Jan 10 at 17:01














0












0








0





$begingroup$



Why $|sqrt{a}-i|=sqrt{a+1}$ for every nonnegative real number $a$?




I know that $i=sqrt{-1}$, and in my textbook I get $$|sqrt{x^2+(y-1)^2}-i|=sqrt{(x^2+(y-1)^2)^2+(-1)^2}=sqrt{x^2+(y-1)^2+1}$$



I can't find how the first two passages are connected.



Edit: corrected equation.










share|cite|improve this question











$endgroup$





Why $|sqrt{a}-i|=sqrt{a+1}$ for every nonnegative real number $a$?




I know that $i=sqrt{-1}$, and in my textbook I get $$|sqrt{x^2+(y-1)^2}-i|=sqrt{(x^2+(y-1)^2)^2+(-1)^2}=sqrt{x^2+(y-1)^2+1}$$



I can't find how the first two passages are connected.



Edit: corrected equation.







complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 10 at 16:51







Kevin

















asked Jan 10 at 16:45









KevinKevin

13311




13311












  • $begingroup$
    I don't get it. Let $x=2$ and $y=1$ to see that this is false.
    $endgroup$
    – Randall
    Jan 10 at 16:47






  • 1




    $begingroup$
    They are not... Take $a=1$. I highly doubt $1-i=sqrt 2$...
    $endgroup$
    – Martigan
    Jan 10 at 16:48






  • 1




    $begingroup$
    For every nonnegative real number $a$, $$|sqrt a-i|^2=(sqrt a-i)overline{(sqrt a+i)}=(sqrt a-i)(sqrt a+i)$$ hence $$|sqrt a-i|^2=a-i^2=a+1$$ which is equivalent to the desired identity $$|sqrt a-i|=sqrt{a+1}$$
    $endgroup$
    – Did
    Jan 10 at 16:50












  • $begingroup$
    I'm sorry, I corrected the equation.
    $endgroup$
    – Kevin
    Jan 10 at 16:52










  • $begingroup$
    Thank you @Did!
    $endgroup$
    – Kevin
    Jan 10 at 17:01


















  • $begingroup$
    I don't get it. Let $x=2$ and $y=1$ to see that this is false.
    $endgroup$
    – Randall
    Jan 10 at 16:47






  • 1




    $begingroup$
    They are not... Take $a=1$. I highly doubt $1-i=sqrt 2$...
    $endgroup$
    – Martigan
    Jan 10 at 16:48






  • 1




    $begingroup$
    For every nonnegative real number $a$, $$|sqrt a-i|^2=(sqrt a-i)overline{(sqrt a+i)}=(sqrt a-i)(sqrt a+i)$$ hence $$|sqrt a-i|^2=a-i^2=a+1$$ which is equivalent to the desired identity $$|sqrt a-i|=sqrt{a+1}$$
    $endgroup$
    – Did
    Jan 10 at 16:50












  • $begingroup$
    I'm sorry, I corrected the equation.
    $endgroup$
    – Kevin
    Jan 10 at 16:52










  • $begingroup$
    Thank you @Did!
    $endgroup$
    – Kevin
    Jan 10 at 17:01
















$begingroup$
I don't get it. Let $x=2$ and $y=1$ to see that this is false.
$endgroup$
– Randall
Jan 10 at 16:47




$begingroup$
I don't get it. Let $x=2$ and $y=1$ to see that this is false.
$endgroup$
– Randall
Jan 10 at 16:47




1




1




$begingroup$
They are not... Take $a=1$. I highly doubt $1-i=sqrt 2$...
$endgroup$
– Martigan
Jan 10 at 16:48




$begingroup$
They are not... Take $a=1$. I highly doubt $1-i=sqrt 2$...
$endgroup$
– Martigan
Jan 10 at 16:48




1




1




$begingroup$
For every nonnegative real number $a$, $$|sqrt a-i|^2=(sqrt a-i)overline{(sqrt a+i)}=(sqrt a-i)(sqrt a+i)$$ hence $$|sqrt a-i|^2=a-i^2=a+1$$ which is equivalent to the desired identity $$|sqrt a-i|=sqrt{a+1}$$
$endgroup$
– Did
Jan 10 at 16:50






$begingroup$
For every nonnegative real number $a$, $$|sqrt a-i|^2=(sqrt a-i)overline{(sqrt a+i)}=(sqrt a-i)(sqrt a+i)$$ hence $$|sqrt a-i|^2=a-i^2=a+1$$ which is equivalent to the desired identity $$|sqrt a-i|=sqrt{a+1}$$
$endgroup$
– Did
Jan 10 at 16:50














$begingroup$
I'm sorry, I corrected the equation.
$endgroup$
– Kevin
Jan 10 at 16:52




$begingroup$
I'm sorry, I corrected the equation.
$endgroup$
– Kevin
Jan 10 at 16:52












$begingroup$
Thank you @Did!
$endgroup$
– Kevin
Jan 10 at 17:01




$begingroup$
Thank you @Did!
$endgroup$
– Kevin
Jan 10 at 17:01










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068881%2fwhy-sqrta-i-sqrta1-for-every-nonnegative-real-number-a%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068881%2fwhy-sqrta-i-sqrta1-for-every-nonnegative-real-number-a%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith