Determine if $R subseteq A times A$ is reflexive, transitive, symmetric, antisymmetric
$begingroup$
Let A be the set of bit strings $a = a_1a_2 ldots a_9$ of length 9. Let $R subset A times A$ be the set of pairs $(a, b)$ such that $a_1 = b_1$ or $a_2 = b_2$.
Decide whether or not the relation $R$ is
- reflexive
- transitive
- symmetric
- antisymmetric
- an equivalence relation.
I do not understand this question. I know that $A times A = {(a_1a_2a_3a_4a_5a_6a_7a_8a_9, a_1a_2a_3a_4a_5a_6a_7a_8a_9)}$. Here's my attempt:
$R$ is reflexive since $aRa$ where $a = a_1a_2a_3a_4a_5a_6a_7a_8a_9$ is true since $a_1 = a_1$.- I'm not sure about this one
- If $R$ is symmetric, aRb is true then $bRa$ is true. Since $aRb$ is true where $a_1 = b_1$ or $a_2 = b_2$ then $bRa$ is true because $b_1 = a_1$ or $b_2 = a_2$.
- It cannot be antisymmetric if it's symmetric
elementary-set-theory
$endgroup$
add a comment |
$begingroup$
Let A be the set of bit strings $a = a_1a_2 ldots a_9$ of length 9. Let $R subset A times A$ be the set of pairs $(a, b)$ such that $a_1 = b_1$ or $a_2 = b_2$.
Decide whether or not the relation $R$ is
- reflexive
- transitive
- symmetric
- antisymmetric
- an equivalence relation.
I do not understand this question. I know that $A times A = {(a_1a_2a_3a_4a_5a_6a_7a_8a_9, a_1a_2a_3a_4a_5a_6a_7a_8a_9)}$. Here's my attempt:
$R$ is reflexive since $aRa$ where $a = a_1a_2a_3a_4a_5a_6a_7a_8a_9$ is true since $a_1 = a_1$.- I'm not sure about this one
- If $R$ is symmetric, aRb is true then $bRa$ is true. Since $aRb$ is true where $a_1 = b_1$ or $a_2 = b_2$ then $bRa$ is true because $b_1 = a_1$ or $b_2 = a_2$.
- It cannot be antisymmetric if it's symmetric
elementary-set-theory
$endgroup$
$begingroup$
Your description of $Atimes A$ is wrong. You should have a pair of $9$-element strings, not nine pairs. Also, you shouldn't have pairs of the same element, you can have two different elements of $A$ in a pair.
$endgroup$
– Michael Burr
Jan 20 at 12:00
$begingroup$
Two strings $a$ and $b$ are equivalent if $a_1=b_1$ or $a_2=b_2$.
$endgroup$
– Wuestenfux
Jan 20 at 12:02
add a comment |
$begingroup$
Let A be the set of bit strings $a = a_1a_2 ldots a_9$ of length 9. Let $R subset A times A$ be the set of pairs $(a, b)$ such that $a_1 = b_1$ or $a_2 = b_2$.
Decide whether or not the relation $R$ is
- reflexive
- transitive
- symmetric
- antisymmetric
- an equivalence relation.
I do not understand this question. I know that $A times A = {(a_1a_2a_3a_4a_5a_6a_7a_8a_9, a_1a_2a_3a_4a_5a_6a_7a_8a_9)}$. Here's my attempt:
$R$ is reflexive since $aRa$ where $a = a_1a_2a_3a_4a_5a_6a_7a_8a_9$ is true since $a_1 = a_1$.- I'm not sure about this one
- If $R$ is symmetric, aRb is true then $bRa$ is true. Since $aRb$ is true where $a_1 = b_1$ or $a_2 = b_2$ then $bRa$ is true because $b_1 = a_1$ or $b_2 = a_2$.
- It cannot be antisymmetric if it's symmetric
elementary-set-theory
$endgroup$
Let A be the set of bit strings $a = a_1a_2 ldots a_9$ of length 9. Let $R subset A times A$ be the set of pairs $(a, b)$ such that $a_1 = b_1$ or $a_2 = b_2$.
Decide whether or not the relation $R$ is
- reflexive
- transitive
- symmetric
- antisymmetric
- an equivalence relation.
I do not understand this question. I know that $A times A = {(a_1a_2a_3a_4a_5a_6a_7a_8a_9, a_1a_2a_3a_4a_5a_6a_7a_8a_9)}$. Here's my attempt:
$R$ is reflexive since $aRa$ where $a = a_1a_2a_3a_4a_5a_6a_7a_8a_9$ is true since $a_1 = a_1$.- I'm not sure about this one
- If $R$ is symmetric, aRb is true then $bRa$ is true. Since $aRb$ is true where $a_1 = b_1$ or $a_2 = b_2$ then $bRa$ is true because $b_1 = a_1$ or $b_2 = a_2$.
- It cannot be antisymmetric if it's symmetric
elementary-set-theory
elementary-set-theory
edited Jan 20 at 12:30


Henrik
6,03592030
6,03592030
asked Jan 20 at 11:52
llamaro25llamaro25
528
528
$begingroup$
Your description of $Atimes A$ is wrong. You should have a pair of $9$-element strings, not nine pairs. Also, you shouldn't have pairs of the same element, you can have two different elements of $A$ in a pair.
$endgroup$
– Michael Burr
Jan 20 at 12:00
$begingroup$
Two strings $a$ and $b$ are equivalent if $a_1=b_1$ or $a_2=b_2$.
$endgroup$
– Wuestenfux
Jan 20 at 12:02
add a comment |
$begingroup$
Your description of $Atimes A$ is wrong. You should have a pair of $9$-element strings, not nine pairs. Also, you shouldn't have pairs of the same element, you can have two different elements of $A$ in a pair.
$endgroup$
– Michael Burr
Jan 20 at 12:00
$begingroup$
Two strings $a$ and $b$ are equivalent if $a_1=b_1$ or $a_2=b_2$.
$endgroup$
– Wuestenfux
Jan 20 at 12:02
$begingroup$
Your description of $Atimes A$ is wrong. You should have a pair of $9$-element strings, not nine pairs. Also, you shouldn't have pairs of the same element, you can have two different elements of $A$ in a pair.
$endgroup$
– Michael Burr
Jan 20 at 12:00
$begingroup$
Your description of $Atimes A$ is wrong. You should have a pair of $9$-element strings, not nine pairs. Also, you shouldn't have pairs of the same element, you can have two different elements of $A$ in a pair.
$endgroup$
– Michael Burr
Jan 20 at 12:00
$begingroup$
Two strings $a$ and $b$ are equivalent if $a_1=b_1$ or $a_2=b_2$.
$endgroup$
– Wuestenfux
Jan 20 at 12:02
$begingroup$
Two strings $a$ and $b$ are equivalent if $a_1=b_1$ or $a_2=b_2$.
$endgroup$
– Wuestenfux
Jan 20 at 12:02
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$A mathrm{x} A={(a,b) | a=a_1...a_9 , b=b_1...b_9, a,b in A}$
i) Reflexive: is $(a,a) in R$, where $a=a_1...a_9$? Yes, because $a_1=a_1$.
ii) Transitive: if $(a,b) in R$ and $(b,c) in R$ do we have $(a,c) in R$? No, take for example $a_1=b_1$, $a_2 neq b_2$ and $b_1 neq c_1$, $b_2 = c_2$. We have $a_1 neq c_1$ and $a_2 neq c_2$, thus $(a,c) notin R$.
iii) Symmetric: if $(a,b) in R$ it means that $a_1=b_1$ or $a_2=b_2$. Therefore we have $b_1=a_1$ or $b_2=a_2$ i.e. $(b,a) in R$.
iv) Antisymmetric: if $(a,b) in R$ and $(b,a) in R$ then we can have $a neq b$: take for example $a_3 neq b_3$. Thus it's not antisymmetric
v) It can't be an equivalence relation since it's not transitive.
$endgroup$
$begingroup$
@Arthur Indeed, but not in this case (edited the answer)
$endgroup$
– user289143
Jan 20 at 12:18
$begingroup$
thank you for the answer :)
$endgroup$
– llamaro25
Jan 20 at 12:23
add a comment |
$begingroup$
Indeed, its not transitive: $a=011$, $b=001$ and $c=101$. Then $aequiv b$ ($a_1=0=b_1$) and $bequiv c$ $(b_2=1=c_2)$, but $anotequiv c$ ($a_1ne c_1, a_2ne c_2$).
$endgroup$
$begingroup$
the explanation is very concise. thank you!
$endgroup$
– llamaro25
Jan 20 at 12:23
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080488%2fdetermine-if-r-subseteq-a-times-a-is-reflexive-transitive-symmetric-antis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$A mathrm{x} A={(a,b) | a=a_1...a_9 , b=b_1...b_9, a,b in A}$
i) Reflexive: is $(a,a) in R$, where $a=a_1...a_9$? Yes, because $a_1=a_1$.
ii) Transitive: if $(a,b) in R$ and $(b,c) in R$ do we have $(a,c) in R$? No, take for example $a_1=b_1$, $a_2 neq b_2$ and $b_1 neq c_1$, $b_2 = c_2$. We have $a_1 neq c_1$ and $a_2 neq c_2$, thus $(a,c) notin R$.
iii) Symmetric: if $(a,b) in R$ it means that $a_1=b_1$ or $a_2=b_2$. Therefore we have $b_1=a_1$ or $b_2=a_2$ i.e. $(b,a) in R$.
iv) Antisymmetric: if $(a,b) in R$ and $(b,a) in R$ then we can have $a neq b$: take for example $a_3 neq b_3$. Thus it's not antisymmetric
v) It can't be an equivalence relation since it's not transitive.
$endgroup$
$begingroup$
@Arthur Indeed, but not in this case (edited the answer)
$endgroup$
– user289143
Jan 20 at 12:18
$begingroup$
thank you for the answer :)
$endgroup$
– llamaro25
Jan 20 at 12:23
add a comment |
$begingroup$
$A mathrm{x} A={(a,b) | a=a_1...a_9 , b=b_1...b_9, a,b in A}$
i) Reflexive: is $(a,a) in R$, where $a=a_1...a_9$? Yes, because $a_1=a_1$.
ii) Transitive: if $(a,b) in R$ and $(b,c) in R$ do we have $(a,c) in R$? No, take for example $a_1=b_1$, $a_2 neq b_2$ and $b_1 neq c_1$, $b_2 = c_2$. We have $a_1 neq c_1$ and $a_2 neq c_2$, thus $(a,c) notin R$.
iii) Symmetric: if $(a,b) in R$ it means that $a_1=b_1$ or $a_2=b_2$. Therefore we have $b_1=a_1$ or $b_2=a_2$ i.e. $(b,a) in R$.
iv) Antisymmetric: if $(a,b) in R$ and $(b,a) in R$ then we can have $a neq b$: take for example $a_3 neq b_3$. Thus it's not antisymmetric
v) It can't be an equivalence relation since it's not transitive.
$endgroup$
$begingroup$
@Arthur Indeed, but not in this case (edited the answer)
$endgroup$
– user289143
Jan 20 at 12:18
$begingroup$
thank you for the answer :)
$endgroup$
– llamaro25
Jan 20 at 12:23
add a comment |
$begingroup$
$A mathrm{x} A={(a,b) | a=a_1...a_9 , b=b_1...b_9, a,b in A}$
i) Reflexive: is $(a,a) in R$, where $a=a_1...a_9$? Yes, because $a_1=a_1$.
ii) Transitive: if $(a,b) in R$ and $(b,c) in R$ do we have $(a,c) in R$? No, take for example $a_1=b_1$, $a_2 neq b_2$ and $b_1 neq c_1$, $b_2 = c_2$. We have $a_1 neq c_1$ and $a_2 neq c_2$, thus $(a,c) notin R$.
iii) Symmetric: if $(a,b) in R$ it means that $a_1=b_1$ or $a_2=b_2$. Therefore we have $b_1=a_1$ or $b_2=a_2$ i.e. $(b,a) in R$.
iv) Antisymmetric: if $(a,b) in R$ and $(b,a) in R$ then we can have $a neq b$: take for example $a_3 neq b_3$. Thus it's not antisymmetric
v) It can't be an equivalence relation since it's not transitive.
$endgroup$
$A mathrm{x} A={(a,b) | a=a_1...a_9 , b=b_1...b_9, a,b in A}$
i) Reflexive: is $(a,a) in R$, where $a=a_1...a_9$? Yes, because $a_1=a_1$.
ii) Transitive: if $(a,b) in R$ and $(b,c) in R$ do we have $(a,c) in R$? No, take for example $a_1=b_1$, $a_2 neq b_2$ and $b_1 neq c_1$, $b_2 = c_2$. We have $a_1 neq c_1$ and $a_2 neq c_2$, thus $(a,c) notin R$.
iii) Symmetric: if $(a,b) in R$ it means that $a_1=b_1$ or $a_2=b_2$. Therefore we have $b_1=a_1$ or $b_2=a_2$ i.e. $(b,a) in R$.
iv) Antisymmetric: if $(a,b) in R$ and $(b,a) in R$ then we can have $a neq b$: take for example $a_3 neq b_3$. Thus it's not antisymmetric
v) It can't be an equivalence relation since it's not transitive.
edited Jan 20 at 12:20
answered Jan 20 at 12:06
user289143user289143
1,002313
1,002313
$begingroup$
@Arthur Indeed, but not in this case (edited the answer)
$endgroup$
– user289143
Jan 20 at 12:18
$begingroup$
thank you for the answer :)
$endgroup$
– llamaro25
Jan 20 at 12:23
add a comment |
$begingroup$
@Arthur Indeed, but not in this case (edited the answer)
$endgroup$
– user289143
Jan 20 at 12:18
$begingroup$
thank you for the answer :)
$endgroup$
– llamaro25
Jan 20 at 12:23
$begingroup$
@Arthur Indeed, but not in this case (edited the answer)
$endgroup$
– user289143
Jan 20 at 12:18
$begingroup$
@Arthur Indeed, but not in this case (edited the answer)
$endgroup$
– user289143
Jan 20 at 12:18
$begingroup$
thank you for the answer :)
$endgroup$
– llamaro25
Jan 20 at 12:23
$begingroup$
thank you for the answer :)
$endgroup$
– llamaro25
Jan 20 at 12:23
add a comment |
$begingroup$
Indeed, its not transitive: $a=011$, $b=001$ and $c=101$. Then $aequiv b$ ($a_1=0=b_1$) and $bequiv c$ $(b_2=1=c_2)$, but $anotequiv c$ ($a_1ne c_1, a_2ne c_2$).
$endgroup$
$begingroup$
the explanation is very concise. thank you!
$endgroup$
– llamaro25
Jan 20 at 12:23
add a comment |
$begingroup$
Indeed, its not transitive: $a=011$, $b=001$ and $c=101$. Then $aequiv b$ ($a_1=0=b_1$) and $bequiv c$ $(b_2=1=c_2)$, but $anotequiv c$ ($a_1ne c_1, a_2ne c_2$).
$endgroup$
$begingroup$
the explanation is very concise. thank you!
$endgroup$
– llamaro25
Jan 20 at 12:23
add a comment |
$begingroup$
Indeed, its not transitive: $a=011$, $b=001$ and $c=101$. Then $aequiv b$ ($a_1=0=b_1$) and $bequiv c$ $(b_2=1=c_2)$, but $anotequiv c$ ($a_1ne c_1, a_2ne c_2$).
$endgroup$
Indeed, its not transitive: $a=011$, $b=001$ and $c=101$. Then $aequiv b$ ($a_1=0=b_1$) and $bequiv c$ $(b_2=1=c_2)$, but $anotequiv c$ ($a_1ne c_1, a_2ne c_2$).
answered Jan 20 at 12:13
WuestenfuxWuestenfux
4,7941513
4,7941513
$begingroup$
the explanation is very concise. thank you!
$endgroup$
– llamaro25
Jan 20 at 12:23
add a comment |
$begingroup$
the explanation is very concise. thank you!
$endgroup$
– llamaro25
Jan 20 at 12:23
$begingroup$
the explanation is very concise. thank you!
$endgroup$
– llamaro25
Jan 20 at 12:23
$begingroup$
the explanation is very concise. thank you!
$endgroup$
– llamaro25
Jan 20 at 12:23
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080488%2fdetermine-if-r-subseteq-a-times-a-is-reflexive-transitive-symmetric-antis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Your description of $Atimes A$ is wrong. You should have a pair of $9$-element strings, not nine pairs. Also, you shouldn't have pairs of the same element, you can have two different elements of $A$ in a pair.
$endgroup$
– Michael Burr
Jan 20 at 12:00
$begingroup$
Two strings $a$ and $b$ are equivalent if $a_1=b_1$ or $a_2=b_2$.
$endgroup$
– Wuestenfux
Jan 20 at 12:02