Find out the angle of <ABC
$begingroup$
Help me to solve it please.how could it be done.I tried but nothing comes out.Help me please
geometry trigonometry triangle
$endgroup$
add a comment |
$begingroup$
Help me to solve it please.how could it be done.I tried but nothing comes out.Help me please
geometry trigonometry triangle
$endgroup$
$begingroup$
is trigonometry allowed?
$endgroup$
– lab bhattacharjee
Nov 22 '13 at 6:49
$begingroup$
See $#132$ of qbyte.org/puzzles/puzzle14.html
$endgroup$
– lab bhattacharjee
Nov 22 '13 at 6:51
$begingroup$
Drop a perpendicular from $A$ to $CB$ and notice characteristic 90-45-45 (half of a square)and 90-60-30 (half of equilateral triangle) triangles. Since the angle at $B$ is obviously $>90^circ$, try dividing it somehow to two angles ($30^circ+x$, $45^circ+x$, $90^circ+x$, etc).
$endgroup$
– Lazar Ljubenović
Nov 22 '13 at 8:11
add a comment |
$begingroup$
Help me to solve it please.how could it be done.I tried but nothing comes out.Help me please
geometry trigonometry triangle
$endgroup$
Help me to solve it please.how could it be done.I tried but nothing comes out.Help me please
geometry trigonometry triangle
geometry trigonometry triangle
edited Nov 22 '13 at 7:57
Fazla Rabbi Mashrur
asked Nov 22 '13 at 6:40
Fazla Rabbi MashrurFazla Rabbi Mashrur
918517
918517
$begingroup$
is trigonometry allowed?
$endgroup$
– lab bhattacharjee
Nov 22 '13 at 6:49
$begingroup$
See $#132$ of qbyte.org/puzzles/puzzle14.html
$endgroup$
– lab bhattacharjee
Nov 22 '13 at 6:51
$begingroup$
Drop a perpendicular from $A$ to $CB$ and notice characteristic 90-45-45 (half of a square)and 90-60-30 (half of equilateral triangle) triangles. Since the angle at $B$ is obviously $>90^circ$, try dividing it somehow to two angles ($30^circ+x$, $45^circ+x$, $90^circ+x$, etc).
$endgroup$
– Lazar Ljubenović
Nov 22 '13 at 8:11
add a comment |
$begingroup$
is trigonometry allowed?
$endgroup$
– lab bhattacharjee
Nov 22 '13 at 6:49
$begingroup$
See $#132$ of qbyte.org/puzzles/puzzle14.html
$endgroup$
– lab bhattacharjee
Nov 22 '13 at 6:51
$begingroup$
Drop a perpendicular from $A$ to $CB$ and notice characteristic 90-45-45 (half of a square)and 90-60-30 (half of equilateral triangle) triangles. Since the angle at $B$ is obviously $>90^circ$, try dividing it somehow to two angles ($30^circ+x$, $45^circ+x$, $90^circ+x$, etc).
$endgroup$
– Lazar Ljubenović
Nov 22 '13 at 8:11
$begingroup$
is trigonometry allowed?
$endgroup$
– lab bhattacharjee
Nov 22 '13 at 6:49
$begingroup$
is trigonometry allowed?
$endgroup$
– lab bhattacharjee
Nov 22 '13 at 6:49
$begingroup$
See $#132$ of qbyte.org/puzzles/puzzle14.html
$endgroup$
– lab bhattacharjee
Nov 22 '13 at 6:51
$begingroup$
See $#132$ of qbyte.org/puzzles/puzzle14.html
$endgroup$
– lab bhattacharjee
Nov 22 '13 at 6:51
$begingroup$
Drop a perpendicular from $A$ to $CB$ and notice characteristic 90-45-45 (half of a square)and 90-60-30 (half of equilateral triangle) triangles. Since the angle at $B$ is obviously $>90^circ$, try dividing it somehow to two angles ($30^circ+x$, $45^circ+x$, $90^circ+x$, etc).
$endgroup$
– Lazar Ljubenović
Nov 22 '13 at 8:11
$begingroup$
Drop a perpendicular from $A$ to $CB$ and notice characteristic 90-45-45 (half of a square)and 90-60-30 (half of equilateral triangle) triangles. Since the angle at $B$ is obviously $>90^circ$, try dividing it somehow to two angles ($30^circ+x$, $45^circ+x$, $90^circ+x$, etc).
$endgroup$
– Lazar Ljubenović
Nov 22 '13 at 8:11
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint: Let $angle BAD = alpha$, so by sine rule,
$$frac{sin alpha}{BD}=frac{sin 45^{circ}}{AB}$$
and
$$frac{sin (alpha+ 15^{circ})}{2BD}=frac{sin 30^{circ}}{AB}$$
so
$$frac{2sin alpha}{sin (alpha+ 15^{circ})}=frac{sin 45^{circ}}{sin 30^{circ}}$$
After finding $alpha$, you can then find $angle ABC$
$endgroup$
add a comment |
$begingroup$
we draw BO$perp$AC and we join OD
- see in $bigtriangleup$BOC $angle$BOC=90 and OD is midian. so OD=BD=DC
- NOW $angle$OCD=30 so $angle$OBD=60=$angle$NOD[ where BO meets AD at N]
- now $angle$NBD=60 and $angle$NDB=45 so $angle$BND=75
- $angle$BND=75 and $angle$NOD=60 so $angle$ODN=15=$angle$OAD. so AO=OD
- now $angle$ODB=45+15=60. so $bigtriangleup$BOD is equilateral. so OD=BO =BD AND AO=OD
- so we have AO=BO and we see $angle$AOB=90 so $angle$OAB=45
- we name $angle$DAB=x so x+15 =45 so x=30
- in $bigtriangleup$ABD $angle$DAB=30 and $angle$ADB=45 so $angle$ABC=105
$endgroup$
add a comment |
$begingroup$
Do construction as shown
WLOG, we can let BD = DC = 1.
Applying special angle relations to $triangle AHC$, we have
$h : h + 1 = 1 : sqrt{3} leftrightarrow h = frac{sqrt(3) +1} {2}$
Then calculate $h - 1$ for later use. $h – 1 = frac {sqrt(3) – 1} {2}$
In $triangle AHB, AB^2 = h^2 + (h – 1)^2 leftrightarrow AB = sqrt 2$
Then, $dfrac {AB}{BD} = dfrac {sqrt 2}{1}$ and $dfrac {BC}{AB} = dfrac {2}{sqrt 2} = dfrac {sqrt 2}{1}$.
By ratio of 2 sides and the included angle, $triangle ABCsimtriangle DBA$.
Therefore, $angle BAD = angle BCA = 30^{circ}$
Hence $angle ABC = 105^{circ}$
Note:- This figure is commonly used in calculating sin (15).
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f576898%2ffind-out-the-angle-of-abc%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Let $angle BAD = alpha$, so by sine rule,
$$frac{sin alpha}{BD}=frac{sin 45^{circ}}{AB}$$
and
$$frac{sin (alpha+ 15^{circ})}{2BD}=frac{sin 30^{circ}}{AB}$$
so
$$frac{2sin alpha}{sin (alpha+ 15^{circ})}=frac{sin 45^{circ}}{sin 30^{circ}}$$
After finding $alpha$, you can then find $angle ABC$
$endgroup$
add a comment |
$begingroup$
Hint: Let $angle BAD = alpha$, so by sine rule,
$$frac{sin alpha}{BD}=frac{sin 45^{circ}}{AB}$$
and
$$frac{sin (alpha+ 15^{circ})}{2BD}=frac{sin 30^{circ}}{AB}$$
so
$$frac{2sin alpha}{sin (alpha+ 15^{circ})}=frac{sin 45^{circ}}{sin 30^{circ}}$$
After finding $alpha$, you can then find $angle ABC$
$endgroup$
add a comment |
$begingroup$
Hint: Let $angle BAD = alpha$, so by sine rule,
$$frac{sin alpha}{BD}=frac{sin 45^{circ}}{AB}$$
and
$$frac{sin (alpha+ 15^{circ})}{2BD}=frac{sin 30^{circ}}{AB}$$
so
$$frac{2sin alpha}{sin (alpha+ 15^{circ})}=frac{sin 45^{circ}}{sin 30^{circ}}$$
After finding $alpha$, you can then find $angle ABC$
$endgroup$
Hint: Let $angle BAD = alpha$, so by sine rule,
$$frac{sin alpha}{BD}=frac{sin 45^{circ}}{AB}$$
and
$$frac{sin (alpha+ 15^{circ})}{2BD}=frac{sin 30^{circ}}{AB}$$
so
$$frac{2sin alpha}{sin (alpha+ 15^{circ})}=frac{sin 45^{circ}}{sin 30^{circ}}$$
After finding $alpha$, you can then find $angle ABC$
answered Nov 22 '13 at 6:48
freak_warriorfreak_warrior
2,8651131
2,8651131
add a comment |
add a comment |
$begingroup$
we draw BO$perp$AC and we join OD
- see in $bigtriangleup$BOC $angle$BOC=90 and OD is midian. so OD=BD=DC
- NOW $angle$OCD=30 so $angle$OBD=60=$angle$NOD[ where BO meets AD at N]
- now $angle$NBD=60 and $angle$NDB=45 so $angle$BND=75
- $angle$BND=75 and $angle$NOD=60 so $angle$ODN=15=$angle$OAD. so AO=OD
- now $angle$ODB=45+15=60. so $bigtriangleup$BOD is equilateral. so OD=BO =BD AND AO=OD
- so we have AO=BO and we see $angle$AOB=90 so $angle$OAB=45
- we name $angle$DAB=x so x+15 =45 so x=30
- in $bigtriangleup$ABD $angle$DAB=30 and $angle$ADB=45 so $angle$ABC=105
$endgroup$
add a comment |
$begingroup$
we draw BO$perp$AC and we join OD
- see in $bigtriangleup$BOC $angle$BOC=90 and OD is midian. so OD=BD=DC
- NOW $angle$OCD=30 so $angle$OBD=60=$angle$NOD[ where BO meets AD at N]
- now $angle$NBD=60 and $angle$NDB=45 so $angle$BND=75
- $angle$BND=75 and $angle$NOD=60 so $angle$ODN=15=$angle$OAD. so AO=OD
- now $angle$ODB=45+15=60. so $bigtriangleup$BOD is equilateral. so OD=BO =BD AND AO=OD
- so we have AO=BO and we see $angle$AOB=90 so $angle$OAB=45
- we name $angle$DAB=x so x+15 =45 so x=30
- in $bigtriangleup$ABD $angle$DAB=30 and $angle$ADB=45 so $angle$ABC=105
$endgroup$
add a comment |
$begingroup$
we draw BO$perp$AC and we join OD
- see in $bigtriangleup$BOC $angle$BOC=90 and OD is midian. so OD=BD=DC
- NOW $angle$OCD=30 so $angle$OBD=60=$angle$NOD[ where BO meets AD at N]
- now $angle$NBD=60 and $angle$NDB=45 so $angle$BND=75
- $angle$BND=75 and $angle$NOD=60 so $angle$ODN=15=$angle$OAD. so AO=OD
- now $angle$ODB=45+15=60. so $bigtriangleup$BOD is equilateral. so OD=BO =BD AND AO=OD
- so we have AO=BO and we see $angle$AOB=90 so $angle$OAB=45
- we name $angle$DAB=x so x+15 =45 so x=30
- in $bigtriangleup$ABD $angle$DAB=30 and $angle$ADB=45 so $angle$ABC=105
$endgroup$
we draw BO$perp$AC and we join OD
- see in $bigtriangleup$BOC $angle$BOC=90 and OD is midian. so OD=BD=DC
- NOW $angle$OCD=30 so $angle$OBD=60=$angle$NOD[ where BO meets AD at N]
- now $angle$NBD=60 and $angle$NDB=45 so $angle$BND=75
- $angle$BND=75 and $angle$NOD=60 so $angle$ODN=15=$angle$OAD. so AO=OD
- now $angle$ODB=45+15=60. so $bigtriangleup$BOD is equilateral. so OD=BO =BD AND AO=OD
- so we have AO=BO and we see $angle$AOB=90 so $angle$OAB=45
- we name $angle$DAB=x so x+15 =45 so x=30
- in $bigtriangleup$ABD $angle$DAB=30 and $angle$ADB=45 so $angle$ABC=105
answered Nov 22 '13 at 8:03
krishan actonkrishan acton
420214
420214
add a comment |
add a comment |
$begingroup$
Do construction as shown
WLOG, we can let BD = DC = 1.
Applying special angle relations to $triangle AHC$, we have
$h : h + 1 = 1 : sqrt{3} leftrightarrow h = frac{sqrt(3) +1} {2}$
Then calculate $h - 1$ for later use. $h – 1 = frac {sqrt(3) – 1} {2}$
In $triangle AHB, AB^2 = h^2 + (h – 1)^2 leftrightarrow AB = sqrt 2$
Then, $dfrac {AB}{BD} = dfrac {sqrt 2}{1}$ and $dfrac {BC}{AB} = dfrac {2}{sqrt 2} = dfrac {sqrt 2}{1}$.
By ratio of 2 sides and the included angle, $triangle ABCsimtriangle DBA$.
Therefore, $angle BAD = angle BCA = 30^{circ}$
Hence $angle ABC = 105^{circ}$
Note:- This figure is commonly used in calculating sin (15).
$endgroup$
add a comment |
$begingroup$
Do construction as shown
WLOG, we can let BD = DC = 1.
Applying special angle relations to $triangle AHC$, we have
$h : h + 1 = 1 : sqrt{3} leftrightarrow h = frac{sqrt(3) +1} {2}$
Then calculate $h - 1$ for later use. $h – 1 = frac {sqrt(3) – 1} {2}$
In $triangle AHB, AB^2 = h^2 + (h – 1)^2 leftrightarrow AB = sqrt 2$
Then, $dfrac {AB}{BD} = dfrac {sqrt 2}{1}$ and $dfrac {BC}{AB} = dfrac {2}{sqrt 2} = dfrac {sqrt 2}{1}$.
By ratio of 2 sides and the included angle, $triangle ABCsimtriangle DBA$.
Therefore, $angle BAD = angle BCA = 30^{circ}$
Hence $angle ABC = 105^{circ}$
Note:- This figure is commonly used in calculating sin (15).
$endgroup$
add a comment |
$begingroup$
Do construction as shown
WLOG, we can let BD = DC = 1.
Applying special angle relations to $triangle AHC$, we have
$h : h + 1 = 1 : sqrt{3} leftrightarrow h = frac{sqrt(3) +1} {2}$
Then calculate $h - 1$ for later use. $h – 1 = frac {sqrt(3) – 1} {2}$
In $triangle AHB, AB^2 = h^2 + (h – 1)^2 leftrightarrow AB = sqrt 2$
Then, $dfrac {AB}{BD} = dfrac {sqrt 2}{1}$ and $dfrac {BC}{AB} = dfrac {2}{sqrt 2} = dfrac {sqrt 2}{1}$.
By ratio of 2 sides and the included angle, $triangle ABCsimtriangle DBA$.
Therefore, $angle BAD = angle BCA = 30^{circ}$
Hence $angle ABC = 105^{circ}$
Note:- This figure is commonly used in calculating sin (15).
$endgroup$
Do construction as shown
WLOG, we can let BD = DC = 1.
Applying special angle relations to $triangle AHC$, we have
$h : h + 1 = 1 : sqrt{3} leftrightarrow h = frac{sqrt(3) +1} {2}$
Then calculate $h - 1$ for later use. $h – 1 = frac {sqrt(3) – 1} {2}$
In $triangle AHB, AB^2 = h^2 + (h – 1)^2 leftrightarrow AB = sqrt 2$
Then, $dfrac {AB}{BD} = dfrac {sqrt 2}{1}$ and $dfrac {BC}{AB} = dfrac {2}{sqrt 2} = dfrac {sqrt 2}{1}$.
By ratio of 2 sides and the included angle, $triangle ABCsimtriangle DBA$.
Therefore, $angle BAD = angle BCA = 30^{circ}$
Hence $angle ABC = 105^{circ}$
Note:- This figure is commonly used in calculating sin (15).
edited Jan 20 at 13:52
answered Nov 22 '13 at 16:29
MickMick
11.9k21641
11.9k21641
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f576898%2ffind-out-the-angle-of-abc%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
is trigonometry allowed?
$endgroup$
– lab bhattacharjee
Nov 22 '13 at 6:49
$begingroup$
See $#132$ of qbyte.org/puzzles/puzzle14.html
$endgroup$
– lab bhattacharjee
Nov 22 '13 at 6:51
$begingroup$
Drop a perpendicular from $A$ to $CB$ and notice characteristic 90-45-45 (half of a square)and 90-60-30 (half of equilateral triangle) triangles. Since the angle at $B$ is obviously $>90^circ$, try dividing it somehow to two angles ($30^circ+x$, $45^circ+x$, $90^circ+x$, etc).
$endgroup$
– Lazar Ljubenović
Nov 22 '13 at 8:11