Does $int_{0}^{infty}frac{r^2}{1+alpha r^4}dr$ converge?
$begingroup$
I want to check that $int_{mathbb R^3}frac{1}{1+x^4+y^4+z^4}dxdydz$ converges.
I moved to spherical coordinates, the integral became $int_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+r^4f(theta,phi)}dphi dtheta dr leqint_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+alpha r^4}dphi dtheta dr = 4pi int_{0}^{infty}frac{r^2}{1+alpha r^4}dr $
I don't know how to show this converges.
Edit: $f(theta,phi)$ is the usual spherical coordinates transform, but notice that it's bounded from below by a positive number, let that number be $alpha > 0$.
calculus integration improper-integrals
$endgroup$
add a comment |
$begingroup$
I want to check that $int_{mathbb R^3}frac{1}{1+x^4+y^4+z^4}dxdydz$ converges.
I moved to spherical coordinates, the integral became $int_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+r^4f(theta,phi)}dphi dtheta dr leqint_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+alpha r^4}dphi dtheta dr = 4pi int_{0}^{infty}frac{r^2}{1+alpha r^4}dr $
I don't know how to show this converges.
Edit: $f(theta,phi)$ is the usual spherical coordinates transform, but notice that it's bounded from below by a positive number, let that number be $alpha > 0$.
calculus integration improper-integrals
$endgroup$
add a comment |
$begingroup$
I want to check that $int_{mathbb R^3}frac{1}{1+x^4+y^4+z^4}dxdydz$ converges.
I moved to spherical coordinates, the integral became $int_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+r^4f(theta,phi)}dphi dtheta dr leqint_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+alpha r^4}dphi dtheta dr = 4pi int_{0}^{infty}frac{r^2}{1+alpha r^4}dr $
I don't know how to show this converges.
Edit: $f(theta,phi)$ is the usual spherical coordinates transform, but notice that it's bounded from below by a positive number, let that number be $alpha > 0$.
calculus integration improper-integrals
$endgroup$
I want to check that $int_{mathbb R^3}frac{1}{1+x^4+y^4+z^4}dxdydz$ converges.
I moved to spherical coordinates, the integral became $int_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+r^4f(theta,phi)}dphi dtheta dr leqint_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+alpha r^4}dphi dtheta dr = 4pi int_{0}^{infty}frac{r^2}{1+alpha r^4}dr $
I don't know how to show this converges.
Edit: $f(theta,phi)$ is the usual spherical coordinates transform, but notice that it's bounded from below by a positive number, let that number be $alpha > 0$.
calculus integration improper-integrals
calculus integration improper-integrals
asked Jan 20 at 21:00
Rick JokerRick Joker
399111
399111
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint: Split the integral
begin{align}
int^infty_0 frac{r^2}{1+alpha r^4} dr = int^infty_1frac{r^2}{1+alpha r^4} dr +int^1_0 frac{r^2}{1+alpha r^4} dr
end{align}
$endgroup$
$begingroup$
And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
$endgroup$
– Rick Joker
Jan 20 at 21:05
$begingroup$
Thanks anyways Jacky.
$endgroup$
– Rick Joker
Jan 20 at 21:06
$begingroup$
@RickJoker Yes.
$endgroup$
– Jacky Chong
Jan 20 at 21:06
add a comment |
$begingroup$
At 0, this is continuous. At $infty$ it behaves like $x mapsto 1/x^2$, which integrates finitely there. The integral converges.
$endgroup$
add a comment |
$begingroup$
There is a problem only at $infty$. You can user equivalence:
$$frac{r^2}{1+alpha r^4}sim_inftyfrac 1{alpha r^2},$$
and $;displaystyleint_1^inftyfrac 1{alpha r^2},mathrm d r;$ converges.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081124%2fdoes-int-0-infty-fracr21-alpha-r4dr-converge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Split the integral
begin{align}
int^infty_0 frac{r^2}{1+alpha r^4} dr = int^infty_1frac{r^2}{1+alpha r^4} dr +int^1_0 frac{r^2}{1+alpha r^4} dr
end{align}
$endgroup$
$begingroup$
And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
$endgroup$
– Rick Joker
Jan 20 at 21:05
$begingroup$
Thanks anyways Jacky.
$endgroup$
– Rick Joker
Jan 20 at 21:06
$begingroup$
@RickJoker Yes.
$endgroup$
– Jacky Chong
Jan 20 at 21:06
add a comment |
$begingroup$
Hint: Split the integral
begin{align}
int^infty_0 frac{r^2}{1+alpha r^4} dr = int^infty_1frac{r^2}{1+alpha r^4} dr +int^1_0 frac{r^2}{1+alpha r^4} dr
end{align}
$endgroup$
$begingroup$
And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
$endgroup$
– Rick Joker
Jan 20 at 21:05
$begingroup$
Thanks anyways Jacky.
$endgroup$
– Rick Joker
Jan 20 at 21:06
$begingroup$
@RickJoker Yes.
$endgroup$
– Jacky Chong
Jan 20 at 21:06
add a comment |
$begingroup$
Hint: Split the integral
begin{align}
int^infty_0 frac{r^2}{1+alpha r^4} dr = int^infty_1frac{r^2}{1+alpha r^4} dr +int^1_0 frac{r^2}{1+alpha r^4} dr
end{align}
$endgroup$
Hint: Split the integral
begin{align}
int^infty_0 frac{r^2}{1+alpha r^4} dr = int^infty_1frac{r^2}{1+alpha r^4} dr +int^1_0 frac{r^2}{1+alpha r^4} dr
end{align}
answered Jan 20 at 21:04
Jacky ChongJacky Chong
19.1k21129
19.1k21129
$begingroup$
And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
$endgroup$
– Rick Joker
Jan 20 at 21:05
$begingroup$
Thanks anyways Jacky.
$endgroup$
– Rick Joker
Jan 20 at 21:06
$begingroup$
@RickJoker Yes.
$endgroup$
– Jacky Chong
Jan 20 at 21:06
add a comment |
$begingroup$
And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
$endgroup$
– Rick Joker
Jan 20 at 21:05
$begingroup$
Thanks anyways Jacky.
$endgroup$
– Rick Joker
Jan 20 at 21:06
$begingroup$
@RickJoker Yes.
$endgroup$
– Jacky Chong
Jan 20 at 21:06
$begingroup$
And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
$endgroup$
– Rick Joker
Jan 20 at 21:05
$begingroup$
And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
$endgroup$
– Rick Joker
Jan 20 at 21:05
$begingroup$
Thanks anyways Jacky.
$endgroup$
– Rick Joker
Jan 20 at 21:06
$begingroup$
Thanks anyways Jacky.
$endgroup$
– Rick Joker
Jan 20 at 21:06
$begingroup$
@RickJoker Yes.
$endgroup$
– Jacky Chong
Jan 20 at 21:06
$begingroup$
@RickJoker Yes.
$endgroup$
– Jacky Chong
Jan 20 at 21:06
add a comment |
$begingroup$
At 0, this is continuous. At $infty$ it behaves like $x mapsto 1/x^2$, which integrates finitely there. The integral converges.
$endgroup$
add a comment |
$begingroup$
At 0, this is continuous. At $infty$ it behaves like $x mapsto 1/x^2$, which integrates finitely there. The integral converges.
$endgroup$
add a comment |
$begingroup$
At 0, this is continuous. At $infty$ it behaves like $x mapsto 1/x^2$, which integrates finitely there. The integral converges.
$endgroup$
At 0, this is continuous. At $infty$ it behaves like $x mapsto 1/x^2$, which integrates finitely there. The integral converges.
answered Jan 20 at 21:10
ncmathsadistncmathsadist
42.9k260103
42.9k260103
add a comment |
add a comment |
$begingroup$
There is a problem only at $infty$. You can user equivalence:
$$frac{r^2}{1+alpha r^4}sim_inftyfrac 1{alpha r^2},$$
and $;displaystyleint_1^inftyfrac 1{alpha r^2},mathrm d r;$ converges.
$endgroup$
add a comment |
$begingroup$
There is a problem only at $infty$. You can user equivalence:
$$frac{r^2}{1+alpha r^4}sim_inftyfrac 1{alpha r^2},$$
and $;displaystyleint_1^inftyfrac 1{alpha r^2},mathrm d r;$ converges.
$endgroup$
add a comment |
$begingroup$
There is a problem only at $infty$. You can user equivalence:
$$frac{r^2}{1+alpha r^4}sim_inftyfrac 1{alpha r^2},$$
and $;displaystyleint_1^inftyfrac 1{alpha r^2},mathrm d r;$ converges.
$endgroup$
There is a problem only at $infty$. You can user equivalence:
$$frac{r^2}{1+alpha r^4}sim_inftyfrac 1{alpha r^2},$$
and $;displaystyleint_1^inftyfrac 1{alpha r^2},mathrm d r;$ converges.
answered Jan 20 at 21:10
BernardBernard
122k740116
122k740116
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081124%2fdoes-int-0-infty-fracr21-alpha-r4dr-converge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown