Does $int_{0}^{infty}frac{r^2}{1+alpha r^4}dr$ converge?












1












$begingroup$


I want to check that $int_{mathbb R^3}frac{1}{1+x^4+y^4+z^4}dxdydz$ converges.



I moved to spherical coordinates, the integral became $int_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+r^4f(theta,phi)}dphi dtheta dr leqint_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+alpha r^4}dphi dtheta dr = 4pi int_{0}^{infty}frac{r^2}{1+alpha r^4}dr $



I don't know how to show this converges.



Edit: $f(theta,phi)$ is the usual spherical coordinates transform, but notice that it's bounded from below by a positive number, let that number be $alpha > 0$.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I want to check that $int_{mathbb R^3}frac{1}{1+x^4+y^4+z^4}dxdydz$ converges.



    I moved to spherical coordinates, the integral became $int_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+r^4f(theta,phi)}dphi dtheta dr leqint_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+alpha r^4}dphi dtheta dr = 4pi int_{0}^{infty}frac{r^2}{1+alpha r^4}dr $



    I don't know how to show this converges.



    Edit: $f(theta,phi)$ is the usual spherical coordinates transform, but notice that it's bounded from below by a positive number, let that number be $alpha > 0$.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I want to check that $int_{mathbb R^3}frac{1}{1+x^4+y^4+z^4}dxdydz$ converges.



      I moved to spherical coordinates, the integral became $int_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+r^4f(theta,phi)}dphi dtheta dr leqint_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+alpha r^4}dphi dtheta dr = 4pi int_{0}^{infty}frac{r^2}{1+alpha r^4}dr $



      I don't know how to show this converges.



      Edit: $f(theta,phi)$ is the usual spherical coordinates transform, but notice that it's bounded from below by a positive number, let that number be $alpha > 0$.










      share|cite|improve this question









      $endgroup$




      I want to check that $int_{mathbb R^3}frac{1}{1+x^4+y^4+z^4}dxdydz$ converges.



      I moved to spherical coordinates, the integral became $int_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+r^4f(theta,phi)}dphi dtheta dr leqint_{0}^{infty}int_{0}^{pi}int_{0}^{2pi}frac{r^2sin(theta)}{1+alpha r^4}dphi dtheta dr = 4pi int_{0}^{infty}frac{r^2}{1+alpha r^4}dr $



      I don't know how to show this converges.



      Edit: $f(theta,phi)$ is the usual spherical coordinates transform, but notice that it's bounded from below by a positive number, let that number be $alpha > 0$.







      calculus integration improper-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 20 at 21:00









      Rick JokerRick Joker

      399111




      399111






















          3 Answers
          3






          active

          oldest

          votes


















          1












          $begingroup$

          Hint: Split the integral
          begin{align}
          int^infty_0 frac{r^2}{1+alpha r^4} dr = int^infty_1frac{r^2}{1+alpha r^4} dr +int^1_0 frac{r^2}{1+alpha r^4} dr
          end{align}






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
            $endgroup$
            – Rick Joker
            Jan 20 at 21:05












          • $begingroup$
            Thanks anyways Jacky.
            $endgroup$
            – Rick Joker
            Jan 20 at 21:06










          • $begingroup$
            @RickJoker Yes.
            $endgroup$
            – Jacky Chong
            Jan 20 at 21:06



















          2












          $begingroup$

          At 0, this is continuous. At $infty$ it behaves like $x mapsto 1/x^2$, which integrates finitely there. The integral converges.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            There is a problem only at $infty$. You can user equivalence:



            $$frac{r^2}{1+alpha r^4}sim_inftyfrac 1{alpha r^2},$$
            and $;displaystyleint_1^inftyfrac 1{alpha r^2},mathrm d r;$ converges.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081124%2fdoes-int-0-infty-fracr21-alpha-r4dr-converge%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Hint: Split the integral
              begin{align}
              int^infty_0 frac{r^2}{1+alpha r^4} dr = int^infty_1frac{r^2}{1+alpha r^4} dr +int^1_0 frac{r^2}{1+alpha r^4} dr
              end{align}






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
                $endgroup$
                – Rick Joker
                Jan 20 at 21:05












              • $begingroup$
                Thanks anyways Jacky.
                $endgroup$
                – Rick Joker
                Jan 20 at 21:06










              • $begingroup$
                @RickJoker Yes.
                $endgroup$
                – Jacky Chong
                Jan 20 at 21:06
















              1












              $begingroup$

              Hint: Split the integral
              begin{align}
              int^infty_0 frac{r^2}{1+alpha r^4} dr = int^infty_1frac{r^2}{1+alpha r^4} dr +int^1_0 frac{r^2}{1+alpha r^4} dr
              end{align}






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
                $endgroup$
                – Rick Joker
                Jan 20 at 21:05












              • $begingroup$
                Thanks anyways Jacky.
                $endgroup$
                – Rick Joker
                Jan 20 at 21:06










              • $begingroup$
                @RickJoker Yes.
                $endgroup$
                – Jacky Chong
                Jan 20 at 21:06














              1












              1








              1





              $begingroup$

              Hint: Split the integral
              begin{align}
              int^infty_0 frac{r^2}{1+alpha r^4} dr = int^infty_1frac{r^2}{1+alpha r^4} dr +int^1_0 frac{r^2}{1+alpha r^4} dr
              end{align}






              share|cite|improve this answer









              $endgroup$



              Hint: Split the integral
              begin{align}
              int^infty_0 frac{r^2}{1+alpha r^4} dr = int^infty_1frac{r^2}{1+alpha r^4} dr +int^1_0 frac{r^2}{1+alpha r^4} dr
              end{align}







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 20 at 21:04









              Jacky ChongJacky Chong

              19.1k21129




              19.1k21129












              • $begingroup$
                And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
                $endgroup$
                – Rick Joker
                Jan 20 at 21:05












              • $begingroup$
                Thanks anyways Jacky.
                $endgroup$
                – Rick Joker
                Jan 20 at 21:06










              • $begingroup$
                @RickJoker Yes.
                $endgroup$
                – Jacky Chong
                Jan 20 at 21:06


















              • $begingroup$
                And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
                $endgroup$
                – Rick Joker
                Jan 20 at 21:05












              • $begingroup$
                Thanks anyways Jacky.
                $endgroup$
                – Rick Joker
                Jan 20 at 21:06










              • $begingroup$
                @RickJoker Yes.
                $endgroup$
                – Jacky Chong
                Jan 20 at 21:06
















              $begingroup$
              And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
              $endgroup$
              – Rick Joker
              Jan 20 at 21:05






              $begingroup$
              And $int_{1}^{infty} frac{r^2}{1 + alpha r^4} drleq int_{1}^{infty}frac{r^2}{alpha r^4}dr$. Literally just thought of that trick too.
              $endgroup$
              – Rick Joker
              Jan 20 at 21:05














              $begingroup$
              Thanks anyways Jacky.
              $endgroup$
              – Rick Joker
              Jan 20 at 21:06




              $begingroup$
              Thanks anyways Jacky.
              $endgroup$
              – Rick Joker
              Jan 20 at 21:06












              $begingroup$
              @RickJoker Yes.
              $endgroup$
              – Jacky Chong
              Jan 20 at 21:06




              $begingroup$
              @RickJoker Yes.
              $endgroup$
              – Jacky Chong
              Jan 20 at 21:06











              2












              $begingroup$

              At 0, this is continuous. At $infty$ it behaves like $x mapsto 1/x^2$, which integrates finitely there. The integral converges.






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                At 0, this is continuous. At $infty$ it behaves like $x mapsto 1/x^2$, which integrates finitely there. The integral converges.






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  At 0, this is continuous. At $infty$ it behaves like $x mapsto 1/x^2$, which integrates finitely there. The integral converges.






                  share|cite|improve this answer









                  $endgroup$



                  At 0, this is continuous. At $infty$ it behaves like $x mapsto 1/x^2$, which integrates finitely there. The integral converges.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 20 at 21:10









                  ncmathsadistncmathsadist

                  42.9k260103




                  42.9k260103























                      1












                      $begingroup$

                      There is a problem only at $infty$. You can user equivalence:



                      $$frac{r^2}{1+alpha r^4}sim_inftyfrac 1{alpha r^2},$$
                      and $;displaystyleint_1^inftyfrac 1{alpha r^2},mathrm d r;$ converges.






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        There is a problem only at $infty$. You can user equivalence:



                        $$frac{r^2}{1+alpha r^4}sim_inftyfrac 1{alpha r^2},$$
                        and $;displaystyleint_1^inftyfrac 1{alpha r^2},mathrm d r;$ converges.






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          There is a problem only at $infty$. You can user equivalence:



                          $$frac{r^2}{1+alpha r^4}sim_inftyfrac 1{alpha r^2},$$
                          and $;displaystyleint_1^inftyfrac 1{alpha r^2},mathrm d r;$ converges.






                          share|cite|improve this answer









                          $endgroup$



                          There is a problem only at $infty$. You can user equivalence:



                          $$frac{r^2}{1+alpha r^4}sim_inftyfrac 1{alpha r^2},$$
                          and $;displaystyleint_1^inftyfrac 1{alpha r^2},mathrm d r;$ converges.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 20 at 21:10









                          BernardBernard

                          122k740116




                          122k740116






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081124%2fdoes-int-0-infty-fracr21-alpha-r4dr-converge%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              'app-layout' is not a known element: how to share Component with different Modules

                              android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                              WPF add header to Image with URL pettitions [duplicate]